CC课件
首页

苏教五上数学第2单元多边形的面积5组合图形面积的计算教案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/3

2/3

剩余1页未读,查看更多内容需下载

组合图形面积的计算教材第21页的内容及第23、第24页的练习四第1~8题。1.让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。2.感受计算组合图形面积的必要性,产生积极的数学学习情感。1.掌握组合图形面积的计算方法。2.理解计算组合图形面积的多种方法。组合图形的纸片,投影仪,课件。1.同学们,我们学过哪些平面图形?它们的面积计算公式是怎么样的?2.出示两幅组合图形:教师:你们能看出它们分别是由哪些图形拼成的吗?像这样由几种简单图形组合而成的图形,我们把它们叫作组合图形。3.组合图形在我们生活中的应用很广泛,今天,我们就结合一个生活中的例子来学习组合图形的面积计算。(板书课题:组合图形的面积计算)1.出示例10。华丰小学校园里有一块草坪(如下图),它的面积是多少平方米? (1)认真观察图形,先独立思考,然后把自己的想法在小组里说说。(2)汇报交流。(结合课件演示)①把组合图形分成上面一个长方形和下面一个梯形。算式:4×12+(12+15)×(10-4)÷2。②把组合图形分成左面一个三角形和右面一个长方形。算式:(15-12)×(10-4)÷2+12×10。③把组合图形补成一个长方形,再减去补上的梯形的面积。算式:15×10-(4+10)×(15-12)÷2。(3)你认为哪种方法比较简便?教师提问:通过割补计算组合图形的面积时,要注意什么?学生积极讨论,交流意见。学生1:要根据原来图形的特点进行思考。学生2:要便于用已知条件计算简单图形的面积。学生3:可以有多种割补方法,但是都要割补成我们学过的基本图形。……2.小结:谁来总结一下,组合图形的面积应该怎么计算?计算组合图形的面积,我们一般是先把它们分割成基本图形,如长方形、正方形、三角形、梯形等,然后再用“合并求和或去空求差”的方法来计算面积。看来同学们学得都很不错,现在老师想考考大家。(出示教材第21页练一练,指名让同学在黑板上计算)如果学生不会做,允许和同桌讨论交流一下。教师:在日常生产和生活中,有些多边形的面积不能直接用公式计算,可以把它划分成几个已经学过的基本图形,先分别计算它们的面积,再求出这个多边形的面积。老师把方法归纳成十二个字“一分图形、二找条件、三算面积”,解决实际问题的时候要灵活运用我们学到的教材知识。1.求下面图形的面积。(单位:m)2.计算下面图形中阴影部分的面积。 课堂作业新设计1.(方法不唯一)30×10+(30-15)×(40-10)÷2=525(m2)2.(25+30)×12÷2-25×12=30(dm2)  5×5÷2×2-5×3÷2×2=10(m2)教材习题教材第21页“练一练”5×(6-2)+2×2=24(平方米)教材第23页“练习四”1.(40+20)×10÷2+20×20=700(cm2) 12×16+20×9÷2=282(cm2)10×8-(10+6)×2÷2=64(cm2)2.(20+36)×20÷2-12×4=512(平方米)3.1700 5300 124.8×8-4×4÷2=56(平方厘米)5.(180+220)×150÷2+(30+220)×(230-150)÷2=40000(平方米)40000平方米=4公顷6.600×100+600×100÷2=90000(平方米) 90000平方米=9公顷 54÷9=6(吨)7.(1)200×100-50×60=17000(平方厘米) 17000×10=170000(平方厘米)(2)170000平方厘米=17平方米 56×17=952(元)8.略组合图形面积的计算计算组合图形的面积,可以先把组合图形分割成几个基本图形,根据条件求出各个基本图形的面积,从而求出组合图形的面积。

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 小学 | 数学
发布时间:2021-11-06 20:00:58 页数:3
价格:¥3 大小:190.92 KB

推荐特供

MORE