CC课件
首页

2021年九年级数学上册第25章随机事件的概率达标检测题(带答案华东师大版)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/11

2/11

剩余9页未读,查看更多内容需下载

第25章达标检测卷一、选择题(每题3分,共30分)1.下列事件中,是必然事件的是(  )A.任意买一张电影票,座位号是2的倍数B.13个人中至少有2个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨2.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为(  )A.B.C.D.3.已知一个布袋里装有2个红球、3个白球和a个黄球,这些球除颜色外其他都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于(  )A.1B.2C.3D.44.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动转盘,转盘停止后,指针落在涂有阴影的区域内的概率为a(若指针落在分界线上,则重转);如果投掷一枚质地均匀的硬币,正面向上的概率为b.关于a,b大小的正确判断是(  )A.a>bB.a=bC.a<bD.不能判断11 5.小明做“用频率估计概率”的试验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是(  )A.任意买一张电影票,座位号是2的倍数的概率B.一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃的概率C.抛一个质地均匀的正方体骰子,落下后朝上的面点数是3的概率D.一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球的概率6.在数-1,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数y=x-2的图象上的概率是(  )A.B.C.D.7.义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名这两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是(  )A.B.C.D.8.一张圆桌旁有四个座位,A先坐在如图所示的座位上,B,C,D三人随机坐到其他三个座位上,则A与B不相邻而坐的概率为(  )A.B.C.D.11 9.如图,在一个长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是(  )A.落在菱形内B.落在圆内C.落在正六边形内D.一样大10.将三枚质地均匀,分别标有1,2,3,4,5,6的正六面体骰子同时掷出,朝上一面上的数字分别记为a,b,c,则a,b,c正好是直角三角形三边长的概率是(  )A.B.C.D.二、填空题(每题3分,共30分)11.下列事件中,必然事件有________,随机事件有________,不可能事件有________.(填序号)①随意翻开日历,看到的是星期天;②十五的月亮像弯弯的小船;③某两个负数的积大于0;④小明买体彩,中了500万元奖金;⑤两直线相交,对顶角相等.12.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是________.13.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,它们除颜色外,形状、大小、质地完全相同.若小刚通过多次重复摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在25%和45%附近,则布袋中白色球的个数可能是________.14.在四边形ABCD中,①AB∥CD;②AD∥BC;③AB=CD;④AD=BC.在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是________.11 15.在如图所示的图形(A,B,C三个区域)中随机地撒一粒豆子,豆子落在________区域的可能性最小.(填“A”“B”或“C”)16.在一个不透明的袋子中装有除颜色外其余均相同的n个球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数100100050001000050000100000摸出黑球次数46487250650082499650007根据列表,可以估计出n的值是________.17.如图,在3×3的方格纸中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是________.18.点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是________.19.如图,有A,B,C三类长方形(或正方形)卡片(a>b),其中甲同学持有A,B类卡片各一张,乙同学持有B,C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是________.20.从-3,-2,-1,0,4这五个数中随机抽取一个数记为a,a的值既在不等式组的解集内,又在函数y=11 的自变量取值范围内的概率是________.三、解答题(21题8分,26题12分,其余每题10分,共60分)21.在一个不透明的口袋中装有除颜色不同外其他都相同的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了,请判断以下事件是随机事件、不可能事件还是必然事件.(1)从口袋中一次任意取出1个球,是白球;(2)从口袋中一次任意取出5个球,全是蓝球;(3)从口袋中一次任意取出5个球,只有蓝球和白球,没有红球;(4)从口袋中一次任意取出6个球,恰好红、蓝、白三种颜色的球都齐了.22.在一次大规模的统计中发现英文文献中字母E使用的频率在0.105附近,而字母J使用的频率大约为0.001,如果这次统计是可信的,那么下列说法正确吗?试说明理由.(1)在英文文献中字母E出现的概率在0.105左右,字母J出现的概率在0.001左右;(2)如果再去统计一篇约含200个字母的英文文献,那么字母E出现的概率一定会非常接近0.105.23.一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球、8个黑球、7个红球.(1)求从袋中摸出1个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出1个球是黑球的概率是11 ,求从袋中取出黑球的个数.24.不透明袋中装有除颜色外其余都相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率.(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.11 25.某班开展安全知识竞赛活动,班长将所有学生的成绩(得分为整数,满分为100分)分成四类,并制作了如下不完整的统计图表: 根据图表信息,回答下列问题:(1)该班共有学生________名,表中a=________;(2)将丁类的5名学生分别记为A,B,C,D,E,现从中随机挑选2名学生参加学校的决赛,请借助画树状图、列表或其他方法,求B能参加决赛的概率.11 26.如图,有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数字1,2,3,4.另有一个不透明的口袋中装着分别标有数字0,1,3的三个小球(除数字不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数(若指针指向边界,则重转),小红从口袋中任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为0的概率.(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.11 答案一、1.B 2.B 3.A 4.B 5.C 6.D7.B 8.C 9.B 10.C二、11.③⑤;①④;② 12. 13.18 14. 15.C16.10 【点拨】∵当试验次数很大时可以用频率估计概率,∴估计摸出黑球的概率为≈,∴≈.∴n≈10.17. 18. 19.20. 【点拨】不等式组的解集为-<x<,要使函数y=有意义,则2x2+2x≠0,解得x≠0且x≠-1.在所给的五个数-3,-2,-1,0,4中,-3与-2既满足-<x<,又满足x≠0且x≠-1,故所求概率为.三、21.解:(1)可能发生,也可能不发生,是随机事件.(2)一定不会发生,是不可能事件.(3)可能发生,也可能不发生,是随机事件.(4)可能发生,也可能不发生,是随机事件.22.解:(1)正确,因为当试验次数很大时可以用频率估计概率.(2)不正确,因为当试验次数不够多时,频率不一定接近概率.23.解:(1)从袋中摸出1个球是黄球的概率为=.(2)设取出x个黑球,由题意得=,解得x=2.经检验x=2是方程的解且符合题意,即从袋中取出黑球的个数为2.24.解:(1)①记2个红球分别为红1,红2,2个绿球分别为绿1,绿2,画树状图如下:11 由树状图可知共有16种等可能的结果,第一次摸到绿球,第二次摸到红球的结果有4种,所以P(第一次摸到绿球,第二次摸到红球)==.②由树状图可知两次摸到的球中有1个绿球和1个红球的结果有8种,所以P(两次摸到的球中有1个绿球和1个红球)==.(2)两次摸到的球中有1个绿球和1个红球的概率是.25.解:(1)40;20(2)列表如下:ABCDEA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D) 由表可知,共有20种等可能的结果.其中B能参加决赛的结果有8种,所以B能参加决赛的概率为=.26.解:(1)列表如下:11 由表格可知共有12种等可能的结果,其中积为0的结果有4种,所以P(积为0)==.(2)游戏不公平.P(积为奇数)==,P(积不为奇数)==.因为<,所以游戏不公平.游戏规则修改为:若这两个数的积为0,则小亮赢;若积为奇数,则小红赢.11

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2021-10-30 20:00:28 页数:11
价格:¥3 大小:263.50 KB

推荐特供

MORE