CC课件
首页

13.3.2 第2课时 含30°角的直角三角形的性质

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/26

2/26

3/26

4/26

剩余22页未读,查看更多内容需下载

13.3.2等边三角形第十三章轴对称优翼课件导入新课讲授新课当堂练习课堂小结第2课时含30°角的直角三角形的性质八年级数学上(RJ)教学课件 学习目标1.探索含30°角的直角三角形的性质.(重点)2.会运用含30°角的直角三角形的性质进行有关的证明和计算.(难点) 导入新课问题引入问题1如图,将两个相同的含30°角的三角尺摆放在一起,你能借助这个图形,找到Rt△ABC的直角边BC与斜边AB之间的数量关系吗?分离拼接ACB 问题2将一张等边三角形纸片,沿一边上的高对折,如图所示,你有什么发现? 讲授新课含30°角的直角三角形的性质一性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.ABCD如图,△ADC是△ABC的轴对称图形,因此AB=AD,∠BAD=2×30°=60°,从而△ABD是一个等边三角形.再由AC⊥BD,可得BC=CD=AB.你还能用其他方法证明吗? 证法1证明:在△ABC中,∵ ∠C=90°,∠A=30°,∴∠B=60°.延长BC到D,使BD=AB,连接AD,则△ABD是等边三角形.又∵AC⊥BD,已知:如图,在Rt△ABC中,∠C=90°,∠A=30°.求证:BC=AB.ABCD证明方法:倍长法∴BC=AB.∴BC=BD. EABC证明2:在BA上截取BE=BC,连接EC.∵∠B=60°,BE=BC.∴△BCE是等边三角形,∴∠BEC=60°,BE=EC.∵∠A=30°,∴∠ECA=∠BEC-∠A=60°-30°=30°.∴AE=EC,∴AE=BE=BC,∴AB=AE+BE=2BC.∴BC=AB.证明方法:截半法 知识要点含30°角的直角三角形的性质在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.应用格式:∵在Rt△ABC中,∠C=90°,∠A=30°,ABC∴BC=AB. √判断下列说法是否正确:1)直角三角形中30°角所对的直角边等于另一直角边的一半.2)三角形中30°角所对的边等于最长边的一半。3)直角三角形中较短的直角边是斜边的一半。4)直角三角形的斜边是30°角所对直角边的2倍. 例1如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是()A.3cmB.6cmC.9cmD.12cm典例精析注意:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.D解析:在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°.在Rt△ACD中,AC=2AD=6cm,在Rt△ABC中,AB=2AC=12cm.∴AB的长度是12cm.故选D. 例2如图,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=3,则PD等于()A.3B.2C.1.5D.1解析:如图,过点P作PE⊥OB于E,∵PC∥OA,∴∠AOP=∠CPO,∴∠PCE=∠BOP+∠CPO=∠BOP+∠AOP=∠AOB=30°.又∵PC=3,∴PE=1.5.∵∠AOP=∠BOP,PD⊥OA,∴PD=PE=1.5.故选C.EC 方法总结:含30°角的直角三角形与角平分线、垂直平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形. 例3如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,过点D作DE⊥AB.DE恰好是∠ADB的平分线.CD与DB有怎样的数量关系?请说明理由.解:理由如下:∵DE⊥AB,∴∠AED=∠BED=90°.∵DE是∠ADB的平分线,∴∠ADE=∠BDE.又∵DE=DE,∴△AED≌△BED(ASA), 在Rt△ACD中,∵∠CAD=30°,∴AD=BD,∠DAE=∠B.∵∠BAD=∠CAD=∠BAC,∴∠BAD=∠CAD=∠B.∵∠BAD+∠CAD+∠B=90°,∴∠B=∠BAD=∠CAD=30°.∴CD=AD=BD,即CD=DB. 方法总结:含30°角的直角三角形的性质是表示线段倍分关系的一个重要的依据,如果问题中出现探究线段倍分关系的结论时,要联想此性质. 想一想:图中BC、DE分别是哪个直角三角形的直角边?它们所对的锐角分别是多少度?例4如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB=7.4cm,∠A=30°,立柱BC、DE要多长?ABCDE ABCDE解:∵DE⊥AC,BC⊥AC,∠A=30°,∴BC=AB,DE=AD.∴BC=AB=×7.4=3.7(m).又AD=AB,∴DE=AD=×3.7=1.85(m).答:立柱BC的长是3.7m,DE的长是1.85m. 例5已知:等腰三角形的底角为15°,腰长为20.求腰上的高.ACBD15°15°20解:过C作CD⊥BA,交BA的延长线于点D.∵∠B=∠ACB=15°(已知),∴∠DAC=∠B+∠ACB=15°+15°=30°,))∴CD=AC=×20=10. 方法总结:在求三角形边长的一些问题中,可以构造含30°角的直角三角形来解决.本题的关键是作高,而后利用等腰三角形及外角的性质,得出30°角,利用含30°角的直角三角形的性质解决问题. 当堂练习1.如图,一棵树在一次强台风中于离地面3米处折断倒下,倒下部分与地面成30°角,这棵树在折断前的高度为()A.6米B.9米C.12米D.15米2.某市在旧城改造中,计划在一块如图所示的△ABC空地上种植草皮以美化环境,已知∠A=150°,这种草皮每平方米售价a元,则购买这种草皮至少需要()A.300a元B.150a元C.450a元D.225a元BB 4.在△ABC中,∠A:∠B:∠C=1:2:3,若AB=10,则BC=.55.如图,Rt△ABC中,∠A=30°,AB+BC=12cm,则AB=______.ACB83.如图,在△ABC中,∠ACB=90°,CD是高,∠A=30°,AB=4.则BD=.ABCD1第3题图第5题图 6.在△ABC中,∠C=90°,∠B=15°,DE是AB的垂直平分线,BE=5,则求AC的长.解:连接AE,∵DE是AB的垂直平分线,∴BE=AE,∴∠EAB=∠B=15°,∴∠AEC=∠EAB+∠B=30°.∵∠C=90°,∴AC=AE=BE=2.5. 7.在△ABC中,AB=AC,∠BAC=120°,D是BC的中点,DE⊥AB于E点,求证:BE=3EA.证明:∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∵D是BC的中点,∴AD⊥BC∴∠ADC=90°,∠BAD=∠DAC=60°.∴AB=2AD.∵DE⊥AB,∴∠AED=90°,∴∠ADE=30°,∴AD=2AE.∴AB=4AE,∴BE=3AE. 8.如图,已知△ABC是等边三角形,D,E分别为BC、AC上的点,且CD=AE,AD、BE相交于点P,BQ⊥AD于点Q,求证:BP=2PQ.拓展提升∴△ADC≌△BEA.证明:∵△ABC为等边三角形,∴AC=BC=AB,∠C=∠BAC=60°,∵CD=AE, ∴∠CAD=∠ABE.∵∠BAP+∠CAD=60°,∴∠ABE+∠BAP=60°.∴∠BPQ=60°.又∵BQ⊥AD,∴BP=2PQ.∴∠PBQ=30°,∴∠BQP=90°, 课堂小结内容在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半使用要点含30°角的直角三角形的性质找准30°的角所对的直角边,点明斜边注意前提条件:直角三角形中

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2021-11-09 16:00:41 页数:26
价格:¥3 大小:750.50 KB

推荐特供

MORE