CC课件
首页

2022年人教版八年级数学上册导学案:第2课时 用分式方程解决实际问题

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/7

2/7

剩余5页未读,查看更多内容需下载

15.3分式方程第2课时用分式方程解决实际问题一、新课导入1.导入课题:分式方程在实际生活、生产实践中有着广泛的应用,今天我们来学习列分式方程解决实际问题.2.学习目标:(1)会找出实际问题中的等量关系,熟练地列出相应的方程.(2)会解含字母系数的分式方程.(3)知道列方程解应用题为什么必须验根,掌握解题的基本步骤和要求.3.学习重、难点:重点:根据条件恰当设未知数列方程和解方程.难点:会从实际问题中获取有用的信息,准确找出相应的数量关系和等量关系.二、分层学习1.自学指导:(1)自学内容:教材第152页例3.(2)自学时间:5分钟.(3)自学方法:认真阅读课本例题,按课本例题分析的思路填空,体会列方程每一步的依据.(4)自学参考提纲:①,工程问题中,工作总量=工作效率×工作时间.在没有具体的工作量时,常把总工程量看作1.②请认真读题,分析题意,完成课本分析中的填空.③问题中是用哪个等量关系来列方程的?甲队单独施工一个月完成的工程+甲乙两队共同工作半个月完成的工程=1④在例3的解答过程中的每一步骤后面标出步骤名称.2.自学:同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生自学中存在的问题.②差异指导:对学生学习中存在的问题进行启发诱导.(2)生助生:将本题的分析过程讲给同桌听,帮助抓住问题关键条件.4.强化:(1)认真读题,找出相关的数量关系和等量关系,是解应用题的关键.(2)练习:某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天加工的效率是原来的2倍,结果共用了7天完成了任务,求该厂原来每天加工多少个零件?解:设该厂原来每天加工x个零件,则采用新技术后,每天加工2x个零件,去分母,得200+500=14x,系数化为1,x=50.,检验:x=50时,2x≠0.所以x=50是原方程的根答:该厂原来每天加工50个零件.1.自学指导:(1)自学内容:教材第153页例4.(2)自学时间:5分钟.(3)自学方法:对照自学提纲,结合例3的解题经验,总结解答列分式方程解应用题的方法与步骤.(4)自学参考提纲:①这是一类分式方程的应用,有速度、路程、时间等三个量,它们之间的关系是路程=速度×时间.②题中的v、s是已知量还是未知量?未知量是什么?v、s是已知量.未知量是提速前列车的平均速度.③认真学习例题中的分析和解答过程,字母一定是表达未知量吗?不一定,需根据具体题目来分析确定.④按例题格式完成教材第154页“练习”的分析与解答.2.自学:同学们结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否读懂例题的分析解答过程和归纳解题步骤是否完整.②差异指导:关注两个方面:a.等量关系;b.解字母系数的分式方程时,已知量可以是字母.(2)生助生:学生之间相互交流帮助.,4.强化:(1)含字母系数的分式方程,分清已知量和未知量.(2)列方程解应用题的一般步骤:①分析题意,找出相等的数量关系;②设未知数,并用未知数表示相关的量;③列出方程;④解方程;⑤验根:Ⅰ.求得的解是不是原方程的解;Ⅱ.求得的解符不符合该实际问题;⑥作答.三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学后体验.2.教师对学生的评价:(1)表现性评价:对学生的学习热情、态度、方法、成果、不足进行归纳点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学除了在一般意义上让学生经历“提出问题——构建模型——解决问题”的过程,还应让学生特别注意分式方程根的“检验”.一、基础巩固(每题10分,共50分)1.学校用420元钱购买“84”消毒液,经过讨价还价,每瓶比原价便宜了0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出的方程是(B),2.甲、乙两人同时从A地出发,骑自行车行30km到B地,甲比乙每小时少骑3km,结果乙早到40分钟,若设乙每小时走xkm,则可列方程(D)3.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加入此项工作,且甲、乙两人的工作效率相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是(A)A.8B.7C.6D.54.甲、乙两人分别从两地同时出发,若相向而行,则a小时相遇;若同向而行,则b小时甲追上乙.那么甲的速度是乙的速度的倍.5.一个分数的分母比它的分子大5,如果这个分数的分子加上14,分母减去1,所得的分数是原分数的倒数,求这个分数.解:设分子为x,则分母为x+5,所以根据倒数关系列方程为:解得:x=4检验,x=4时,(x+5)(x+14)≠0,所以,x=4是原分式方程的根.,所以这个分数为.二、综合应用(20分)6.为了支持爱心捐款活动,某校师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款的人数比第一天捐款的人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?解:设第一天参加捐款的人数为x人,则可列方程为解得x=200(人),检验:当x=200时,x(x+50)≠0,所以,原分式方程的解为x=200.两天共捐款人数为200+250=450(人),人均捐款为4800÷200=24(元).答:两天共参加捐款的人数为450人,人均捐款24元.三、拓展延伸(30分)7.在某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?,解:(1)解:设乙队单独完成这项工程需要x天,则根据题意可列方程为解得x=90.经检验:x=90时原方程的根.所以,乙队单独完成这项工程需要90天.(2)甲队单独做工程款:60×3.5=210(万元).乙队单独做需要90天,超过了70天.甲乙合作工程款:36×(3.5+2)=198(万元)∴甲、乙合作完该工程最省钱.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2022-08-02 19:06:18 页数:7
价格:¥3 大小:227.00 KB

推荐特供

MORE