CC课件
首页

2022年人教版九年级数学上册教案:22.2 二次函数与一元二次方程

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

22.2二次函数与一元二次方程【知识与技能】了解二次函数与一元二次方程之间的联系,掌握二次函数图象与x轴的位置关系可由对应的一元二次方程的根的判别式进行判别,了解用图象法确定一元二次方程的近似解的方法.【过程与方法】通过对实际问题情境的思考感受二次函数与对应的一元二次方程的联系,体会用函数的观点看一元二次方程的思想方法.【情感态度】进一步增强学生的数形结合思想方法,增强学生的综合解题能力.【教学重点】二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0之间的联系,利用二次函数的图象求一元二次方程的近似解.【教学难点】一元二次方程根的情况与二次函数图象与x轴位置关系的联系.一、情境导入,初步认识问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(m)与飞行时间t(s)之间具有关系:h=20t-5t2.考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要飞行多长时间?(2)球的飞行高度能否达到20m?如能,需要飞行多长时间?(3)球的飞行高度能否达到20.5m?为什么?,(4)球从飞出到落地要用多少时间?【教学说明】教师可通过教材的引例,引用其递进式的问题链,让学生在相互交流过程中,自然而然地感受到引用方程思想来解决函数问题的思想方法.教师巡视,及时释疑解惑,并尽量予以肯定和鼓励,激发学生的学习兴趣.二、思考探究,获取新知通过对上述问题的思考,可以看出二次函数与一元二次方程之间存在着密切联系.例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,可以看作解一元二次方程-x2+4x=3;反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4x+3的值为0,求自变量x的值.问题1画出函数y=x2-4x+3的图象,根据图象回答下列问题:(1)图象与x轴交点的坐标是什么?(2)当x取何值时,y=0?这里x的取值与方程x2-4x+3=0有什么关系?(3)你能从中得到什么启示?问题2下列函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?(1)y=x2+x-2;(2)y=x2-6x+9;(3)y=x2-x+1.问题3一般地,二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?【教学说明】让学生在合作交流过程中完成问题1,2,并对问题3形成一个初步认识,达到从感性认识到理性思考的飞跃,从而认识新知.教师应巡视,对学生的交流成果给予积极评价,最后教师应在黑板上进行归纳总结.【归纳结论】一般地,从二次函数y=ax2+bx+c的图象可知:(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标为x0.那么当x=x0时,函数的值为0,因此x=x0就是方程ax2+bx+c=0的一个根;(2)二次函数y=ax2+bx+c的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程ax2+bx+c=0的根的三种情况:没有实数根,有两个相等的实数根,有两个不相等的实数根.因此可通过方程的根的判别式Δ<0,Δ=0和Δ>0来判别抛物线与x轴的交点的个数(Δ,=b2-4ac,其中a、b、c为抛物线表达式中二次项系数,一次项系数和常数项).【试一试】1.若抛物线y=x2-mx+1与x轴没有公共点,则m的取值范围是.2.求证:抛物线y=x2+ax+a-2与x轴总有两个交点.【教学说明】让学生分组完成两个小题,使他们能体验成功的喜悦,对尚有困难的学生,应给予指导.三、运用新知,深化理解1.画出函数y=x2-2x-3的图象,利用图象回答:(1)方程x2-2x-3=0的解是什么?(2)x取什么值时,函数值大于0?(3)x取什么值时,函数值小于0?2.利用函数图象求方程x2-2x-2=0的实数解.【教学说明】题1可让学生自主完成,教师予以巡视,并作指导;题2的处理建议师生共同完成,这里涉及到逼近求值思想,应作为指导.评讲本题的目的是让学生能进一步体验函数与方程的密切联系,但不要求学生掌握,只要了解即可.【答案】1.图象如图所示:(1)当x1=3,x2=-1.(2)当x<-1或x>3时函数值大于0.(3)当-1

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2022-08-03 10:41:03 页数:5
价格:¥3 大小:214.00 KB

推荐特供

MORE