CC课件
首页

最新北师大版八年级数学上册期末测试题含答案(共2套)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/27

2/27

剩余25页未读,查看更多内容需下载

北师大版八年级数学上册期末测试题(一)(时间:120分钟分值:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是()A.中位数B.平均数C.方差D.众数2.下列各式计算正确的是()A.B.C.D.3.在△ABC中,∠A=∠B+∠C,∠B=2∠C-6°,则∠C的度数为()A.90°B.58°C.54°D.32°4.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.5.已知直线与的交点的坐标为(1,),则方程组的解是()A.B.C.D.6.下列各数、π、、、0.中,无理数的个数有(  )A.1个B.2个C.3个D.4个7.下面二次根式是最简二次根式的是(  )A.B.C.D.8.下列计算正确的是(  )A.=B.=6C.D.9.下列长度的线段不能构成直角三角形的是(  )A.6,8,10B.5,12,13C.1.5,2,3D.,,310.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,则四人中成绩最稳定的是(  )A.甲B.乙C.丙D.丁二、填空题(本大题共6小题,每小题4分,共24分)11.计算:=  .12.某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为  分.13.实数-8的立方根是__________.14.如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于__________°.15.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,求出这两个角的度数?设∠ABD和∠DBC的度数分别为x°,y°,根据题意所列方程组是  .16.如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为  .三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:(2﹣)(2+)+(2﹣)2﹣.18.(6分)解方程组:.19.(6分)如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为  点B关于y轴对称的点坐标为  点C关于原点对称的点坐标为  (2)若网格上的每个小正方形的边长为1,则△ABC的面积是  .四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)甲、乙两位同学5次数学成绩统计如表,他们的5次总成绩相同,小明根据他们的成绩绘制了尚不完整的统计图表,请同学们完成下列问题.第1次第2次第3次第4次第5次甲成绩9040704060乙成绩705070a70甲、乙两人的数学成绩统计表(1)a=  ,=  ;(2)请完成图中表示乙成绩变化情况的折线;(3)S甲2=360,乙成绩的方差是  ,可看出  的成绩比较稳定(填“甲”或“乙”).从平均数和方差的角度分析,  将被选中.21.(7分)已知:如图,∠1+∠D=90°,BE∥FC,且DF⊥BE与点G,并分别与AB、CD交于点F、D.求证:AB∥CD.(完成证明并写出推理依据)证明:∵DF⊥BE(已知),∴∠2+ ∠ =90°(  ),∵∠1+∠D=90°(已知),∴  =  (等量代换),∵BE∥CF(已知),∴∠2=∠C(  ),∴∠1=  (  ),∴AB∥CD(  ).22.(7分)已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:①1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?②请你帮该物流公司设计租车方案.五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.24.(9分)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的是两车距B城的路程S甲(千米)、S乙(千米)与行驶时间t(时)的函数图象的一部分.(1)分别求出S甲、S乙与t的函数关系式(不必写出t的取值范围);(2)求A、B两城之间的距离,及t为何值时两车相遇;(3)当两车相距300千米时,求t的值.25.(9分)如图,一次函数y=-x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积;(3)在直线OP上是否存在异与点P的另一点C,使得△OBC与△OBP的面积相等?若存在,请求出C点的坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.D2.D3.D4.D5.A1.6.B7.D8.A9.C.10.D二、填空题(本大题共6小题,每小题4分,共24分)11.计算:= 30 .【考点】二次根式的乘除法.【分析】系数和被开方数分别相乘,最后化成最简二次根式即可.【解答】解:3×2=6=30,故答案为:30.12.某招聘考试分笔试和面试两种.其中笔试按60%、面试按40%计算加权平均数作为总成绩.小明笔试成绩为90分.面试成绩为85分,那么小明的总成绩为 88 分.【考点】加权平均数.【分析】根据笔试和面试所占的权重以及笔试成绩和面试成绩,列出算式,进行计算即可.【解答】解:∵笔试按60%、面试按40%,∴总成绩是(90×60%+85×40%)=88(分);故答案为:88.13.-214.8015.如图,AB⊥BC,∠ABD的度数比∠DBC的度数的两倍少15°,求出这两个角的度数?设∠ABD和∠DBC的度数分别为x°,y°,根据题意所列方程组是  .【考点】由实际问题抽象出二元一次方程组.【分析】根据两角互余和题目所给的关系,列出方程组.【解答】解:设∠ABD和∠DBC的度数分别为x°、y°,由题意得,.故答案为:.16.如图,直线y=﹣x+3与坐标轴分别交于点A、B,与直线y=x交于点C,线段OA上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连接CQ.若△OQC是等腰直角三角形,则t的值为 2或4 .【考点】一次函数图象上点的坐标特征;等腰直角三角形.【专题】分类讨论.【分析】分为两种情况,画出图形,根据等腰三角形的性质求出即可.【解答】解:∵由,得,∴C(2,2);如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2,②如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为:2或4; 三、解答题(本大题共3小题,每小题6分,共18分)17.(6分)计算:(2﹣)(2+)+(2﹣)2﹣.【考点】二次根式的混合运算.【专题】计算题;实数.【分析】原式利用平方差公式,完全平方公式化简,计算即可得到结果.【解答】解:原式=4﹣5+4﹣4+2﹣=5﹣.18.(6分)解方程组:.【考点】解二元一次方程组.【分析】根据方程组的特点采用相应的方法求解,用加减法较简单.【解答】解:①×2+②,得11x=22,x=2,代入①,得y=﹣1.所以方程组的解为.19.(6分)如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为 (﹣1,﹣3) 点B关于y轴对称的点坐标为 (﹣2,0) 点C关于原点对称的点坐标为 (3,1) (2)若网格上的每个小正方形的边长为1,则△ABC的面积是 9 .【考点】作图-轴对称变换.【分析】(1)直接利用关于坐标轴对称点的性质得出各对应点位置即可;(2)利用△ABC所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)点A关于x轴对称的点坐标为(﹣1,﹣3);点B关于y轴对称的点坐标为:(﹣2,0);点C关于原点对称的点坐标为:(3,1);故答案为:(﹣1,﹣3),(﹣2,0),(3,1);(2)△ABC的面积是:4×5﹣×2×4﹣×3×3﹣×1×5=9.故答案为:9. 四、解答题(本大题共3小题,每小题7分,共21分)20.(7分)甲、乙两位同学5次数学成绩统计如表,他们的5次总成绩相同,小明根据他们的成绩绘制了尚不完整的统计图表,请同学们完成下列问题.第1次第2次第3次第4次第5次甲成绩9040704060乙成绩705070a70甲、乙两人的数学成绩统计表(1)a= 40 ,= 60 ;(2)请完成图中表示乙成绩变化情况的折线;(3)S甲2=360,乙成绩的方差是 160 ,可看出 乙 的成绩比较稳定(填“甲”或“乙”).从平均数和方差的角度分析, 乙 将被选中.【考点】方差;折线统计图;算术平均数.【分析】(1)根据题意和平均数的计算公式计算即可;(2)根据求出的a的值,完成图中表示乙成绩变化情况的折线;(3)根据方差的计算公式计算,根据方差的性质进行判断即可.【解答】解:(1)∵他们的5次总成绩相同,∴90+40+70+40+60=70+50+70+a+70,解得a=40,(70+50+70+40+70)=60,故答案为:40;60;(2)如图所示:(3)S2乙=[(70﹣60)2+(50﹣60)2+(70﹣60)2+(40﹣60)2+(70﹣60)2]=160.∵S2乙<S甲2,∴乙的成绩稳定,从平均数和方差的角度分析,乙将被选中,故答案为:160;乙;乙.21.(7分)已知:如图,∠1+∠D=90°,BE∥FC,且DF⊥BE与点G,并分别与AB、CD交于点F、D.求证:AB∥CD.(完成证明并写出推理依据)证明:∵DF⊥BE(已知),∴∠2+ ∠D =90°( 三角形内角和定理 ),∵∠1+∠D=90°(已知),∴ ∠1 = ∠2 (等量代换),∵BE∥CF(已知),∴∠2=∠C( 两直线平行,同位角相等 ),∴∠1= ∠C ( 等量代换 ),∴AB∥CD( 内错角相等,两直线平行 ).【考点】平行线的判定与性质.【分析】根据DF⊥BE利用垂直的定义以及三角形内角和定理即可得出∠2+∠D=90°,利用等量代换即可得出∠1=∠2,再根据平行线的性质可得出∠2=∠C,进而可得出∠1=∠C,利用平行线的判定定理即可得出AB∥CD.【解答】证明:∵DF⊥BE(已知),∴∠2+∠D=90°(三角形内角和定理),∵∠1+∠D=90°(已知),∴∠1=∠2(等量代换),∵BE∥CF(已知),∴∠2=∠C(两直线平行,同位角相等),∴∠1=∠C(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:∠D;三角形内角和定理;∠1;∠2;两直线平行,同位角相等;∠C;等量代换;内错角相等,两直线平行. 22.(7分)已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:①1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?②请你帮该物流公司设计租车方案.【考点】二元一次方程组的应用;二元一次方程的应用.【分析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B型车载满货物一次可运货11吨”,分别得出等式方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案.【解答】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:,解得:.答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=,∵a、b都是正整数,∴或或.答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.五、解答题(本大题共3小题,每小题9分,共27分)23.(9分)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.【考点】平行四边形的性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)通过证明△ODF与△OBE全等即可求得.(2)由△ADB是等腰直角三角形,得出∠A=45°,因为EF⊥AB,得出∠G=45°,所以△ODG与△DFG都是等腰直角三角形,从而求得DG的长和EF=2,然后等腰直角三角形的性质即可求得.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠ODF=∠OBE,在△ODF与△OBE中∴△ODF≌△OBE(AAS)∴BO=DO;(2)解:∵BD⊥AD,∴∠ADB=90°,∵∠A=45°,∴∠DBA=∠A=45°,∵EF⊥AB,∴∠G=∠A=45°,∴△ODG是等腰直角三角形,∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形,∵△ODF≌△OBE(AAS)∴OE=OF,∴GF=OF=OE,即2FG=EF,∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG==DO,∴在等腰RT△ADB中,DB=2DO=2=AD∴AD=2,24.(9分)甲、乙两列火车分别从A、B两城同时匀速驶出,甲车开往B城,乙车开往A城.由于墨迹遮盖,图中提供的是两车距B城的路程S甲(千米)、S乙(千米)与行驶时间t(时)的函数图象的一部分.(1)分别求出S甲、S乙与t的函数关系式(不必写出t的取值范围);(2)求A、B两城之间的距离,及t为何值时两车相遇;(3)当两车相距300千米时,求t的值.【考点】一次函数的应用.【分析】(1)根据函数图象可以分别求得S甲、S乙与t的函数关系式;(2)将t=0代入S甲=﹣180t+600,即可求得A、B两城之间的距离,然后将(1)中的两个函数相等,即可求得t为何值时两车相遇;(3)根据题意可以列出相应的方程,从而可以求得t的值.【解答】解:(1)设S甲与t的函数关系式是S甲=kt+b,,得,即S甲与t的函数关系式是S甲=﹣180t+600,设S乙与t的函数关系式是S甲=at,则120=a×1,得a=120,即S乙与t的函数关系式是S甲=120t;(2)将t=0代入S甲=﹣180t+600,得S甲=﹣180×0+600,得S甲=600,令﹣180t+600=120t,解得,t=2,即A、B两城之间的距离是600千米,t为2时两车相遇;(3)由题意可得,|﹣180t+600﹣120t|=300,解得,t1=1,t3=3,即当两车相距300千米时,t的值是1或3. 25.(9分)解:(1)∵点P(2,n)在正比例函数y=x图象上,∴n=×2=3,∴点P的坐标为(2,3).∵点P(2,3)在一次函数y=﹣x+m的图象上,∴3=﹣2+m,解得:m=5,∴一次函数解析式为y=﹣x+5.∴m的值为5,n的值为3.……4分(2)当x=0时,y=﹣x+5=5,∴点B的坐标为(0,5),∴S△POB=OB•xP=×5×2=5.……8分(3)存在.∵S△OBC=OB•|xC|=S△POB=5,∴xC=﹣2或xC=2(舍去).当x=﹣2时,y=×(﹣2)=﹣3.∴点C的坐标为(﹣2,﹣3).……12分北师大版八年级数学上册期末考试模拟题(二)(时间:120分钟分值:120分)一、选择题(每小题4分,共计48分)1.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠CD.a:b:c=1:2:2.如图,将直尺与含30角的三角尺摆放在一起,若∠1=20,则∠2的度数是()A.30B.40C.50D.60第2题图第3题3.小明家1至6月份的用水量统计图如图所示,关于这组数据,下列说法错误的是()A.众数是6吨B.中位数是5吨C.平均数是5吨D.方差是吨4.如果点P(x-4,x+3)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为()5.一次函数满足,且y随x的增大而减小,则此函数的图像一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.下列各数中最小的是()A.B.1C.D.07.下列语言叙述是命题的是()A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等8.点P(3,-5)关于x轴对称的点的坐标为()A.(3,5)B.(3,-5)C.(-3,5)D.(-3,-5)9.如图,雷达探测器测得六个目标A,B,C,D,E,F出现,按照规定的目标表示方法,目标E,F的位置表示为E(3,300°),F(5,210°),按照此方法在表示目标A,B,D,E的位置时,其中表示不正确的是()A.A(4,30°)B.B(2,90°)C.C(6,120°)D.D(3,240°)第9题图第10题图10.如图,阴影部分是一个长方形,它的面积是()A.3cm2B.4cm2C.5cm2D.6cm211.关于一次函数y=-2x+b(b为常数),下列说法正确的是()A.y随x的增大而增大B.当b=4时,直线与坐标轴围成的面积是4C.图象一定过第一、三象限D.与直线y=-2x+3相交于第四象限内一点12.一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之是的函数关系如图,则这次长跑的全程为()米。A.2000米B.2100米C.2200米D.2400米二、填空题(每小题4分,共24分)13.-8的立方根是.14.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是.15.已知y是x的正比例函数,当x=-2时,y=4;当x=3时,y=__________.16.一架长25m的云梯,斜立在一坚立的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动__________m.17.如图,在正方形OABC中,点A的坐标是(-3,1),点B的纵坐标是4,则B点的横坐标是__________.18.设直线(n为自然数)与两坐标轴围成的三角形面积为,则的值为__________.三、解答题19.(每小题4分,共8分)计算:(1)(2)20.(每小题4分,共8分)解下列方程组:(1)(2)21.(本题8分)九年级甲、乙两名同学期末考试的成绩(单位:分)如下:语文数学英语历史理化体育甲759385849590乙858591858985根据表格中的数据,回答下列问题:(1)甲的总分为522分,则甲的平均成绩是__________分,乙的总分为520分,________的成绩好一些.(填“甲”或者“乙”)(2)经过计算知.你认为__________不偏科;(填“甲”或者“乙”)(3)中招录取时,历史和体育科目的权重是0.3,其它科成绩权重是1,请问谁的成绩更好一些?请说明理由.22.(本题8分)如图,在正方形网格中,每个小正方形的边长为l,格点三角形(顶点是网格线的交点)ABC的顶点A,C的坐标分别为(-4,5),(-1,3).(1)请在网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A'B'C';(3)B'的坐标为__________;(4)△ABC的面积为__________.23.(每小题6分,共12分)(1)如图,已知DE∥BC,∠D:∠DBC=2:1,∠1=∠2.求∠DEB的度数.(2)“三等分一个任意角”是数学史上一个著名问题,今天人们已经知道,仅用圆规直尺是不可能做出的。在探索中,有人曾利用过如图所示的图形,其中,ABCD是长方形(AD∥CB,F是DA延长线上一点,G是CF上一点,并且∠ACG=∠AGC,∠GAF=∠F,你能证明∠ECB=∠ACB吗?24.(本题10分)今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.25.(本题12分)上周六上午8点,小颖同爸爸妈妈一起从济南出发回青岛看望姥姥,途中他们在一个服务区休息了0.5小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离y(千米)与他们路途所用的时间x(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟后,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?26.(本题12分)如图,直线AB与坐标轴交与点A(0,6),B(8,0),动点P沿路线O→B→A运动.(1)求直线AB的表达式;(2)当点P在OB上,使得AP平分∠OAB时,求此时点P的坐标;(3)当点P在AB上,把线段AB分成1:3的两部分时,求此时点P的坐标.八年级数学试题答案一、选择题(每小题4分,共计48分)1-5BCBCA6-10ADADC11-12BC二、填空题(每小题4分,共24分)13.-214.2515.-616.817.-218.三、解答题19.(每小题4分,共8分)计算:(1)(2)20.(每小题4分,共8分)解下列方程组:(1)(2)21.(1)87;甲.……2分(2)乙……4分(3)甲:75+93+85+84×0.3+95+90×0.3=400.2(分)……5分乙:85+85+91+85×0.3+89+85×0.3=401(分)……6分400.2<401答:乙的成绩更好一些.……8分22.解:(1)如图所示:……2分(2)如图所示:……4分(3)B′(2,1);……6分(4)4.……8分23.(1)解:∵DE∥BC∴∠D+∠DBC=180°∵∠D:∠DBC=2:1∴∠D=2∠DBC∴2∠DBC+∠DBC=180°即∠DBC=60°……4分∵∠1=∠2∴∠1=∠2=30°∵DE∥BC∴∠DEB=∠1=30°……6分(2)解:∵AD∥CB∴∠FCB=∠F……2分∵∠AGC是△AGF的外角,∴∠AGC=∠GAF+∠F=2∠F……4分又∵∠ACG=∠AGC∠ACB=∠ECB+∠ACG=∠F+2∠F=3∠F=3∠ECB∴∠ECB=∠ACB……6分24.解:设该市去年外来人数为x万人,外出旅游的人数为y万人,由题意得,……5分解得:……7分则今年外来人数为:100×(1+30%)=130(万人),今年外出旅游人数为:80×(1+20%)=96(万人).答:该市今年外来人数为130万人,外出旅游的人数为96万人.……10分25.解:(1)设直线AB所对应的函数关系式为y=kx+b,把(0,320)和(2,120)代入y=kx+b得:,解得:,∴直线AB所对应的函数关系式为:y=﹣100x+320;……4分(2)设直线CD所对应的函数关系式为y=mx+n,把(2.5,120)和(3,80)代入y=mx+n得:,解得:,∴直线CD所对应的函数关系式为y=﹣80x+320,……8分当y=0时,x=4,∴小颖一家当天12点到达姥姥家.……12分26.解:(1);(2)(3,0);(3)P1(),P2()

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2022-08-07 19:00:02 页数:27
价格:¥8 大小:576.31 KB

推荐特供

MORE