CC课件
首页

第2章图形的轴对称2.4线段的垂直平分线第1课时教学课件(青岛版八年级上册)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/11

2/11

3/11

4/11

剩余7页未读,查看更多内容需下载

第2章图形的轴对称2.4线段的垂直平分线第1课时\n教学目标1.运用作图和实验的方法,探索线段的垂直平分线的性质定理和逆定理;2.会用尺规作出已知线段的垂直平分线\nACDBM实验与探究:试验:按以下方法,观察线段是否是轴对称图形?请同学们在练习本上画出线段AB及其中点M,再过点M画出AB的垂线CD,沿直线CD将纸对折,观察线段MA和MB是否完全重合?\n结论:线段MA和MB完全重合,因此,线段AB是轴对称图形。ACDBM问题1:既然线段AB是轴对称图形。那么它的对称轴是什么呢?(直线CD)\n问题2:直线CD具有什么特征或特性?ACDBM(CD⊥ABMA=MB即:直线CD垂直并且平分线段AB.)定义:垂直并且平分一条线段的直线叫做这条线段的垂直平分线。也称中垂线。如上图,直线CD就是线段AB的垂直平分线注意:①线段的中垂线是直线。②直线和射线没有中垂线。\nAB线段的垂直平分线EA=EBE1E1A=E1B……命题:线段垂直平分线上的点到这条线段两个端点的距离相等。EcDM动手操作:作线段AB的中垂线CD,垂足为M;在CD上任取一点E,连结EA、EB;量一量:EA、EB的长,你能发现什么?由此你能得到什么规律?\nACDBME线段垂直平分线的性质:线段的垂直平分线上的点到这条线段两个端点的距离相等。如图:∵AM=BM,CD⊥AB,E是CD上任意一点(已知),∴EA=EB(线段垂直平分线上的点到这条线段两个端点距离相等).\n线段的垂直平分线的作法已知:线段AB,如图.求作:线段AB的垂直平分线.作法:用尺规作线段的垂直平分线.1.分别以点A和B为圆心,以大于1/2AB长为半径作弧,两弧交于点C和D.ABCD2.作直线CD.则直线CD就是线段AB的垂直平分线.请你说明CD为什么是AB的垂直平分线,并与同伴进行交流.\n泰安市政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等。ABC实际问题\nBAC线段的垂直平分线1、求作一点P,使它和△ABC的三个顶点距离相等.实际问题数学化pPA=PB=PC\n应用举例:2.如图所示,在ΔABC中,边BC的垂直平分线MN分别交AB于点M,交BC于点N,ΔBMC的周长为23,且BM=7,求BC的长。CBMNA

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2022-08-17 13:00:04 页数:11
价格:¥3 大小:349.00 KB

推荐特供

MORE