CC课件
首页

第15章轴对称图形和等腰三角形15.3等腰三角形第2课时等腰三角形的判定定理及推论课件(沪科版八上)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/33

2/33

3/33

4/33

剩余29页未读,查看更多内容需下载

第15章轴对称图形与等腰三角形15.3等腰三角形第2课时等腰三角形的判定定理及推论\n1.理解等腰三角形的判定方法的证明过程;(重点)2.掌握等腰三角形的判定定理及它的两个推论,能运用定理和推论进行简单的推理和计算;(重点、难点)3.通过定理的证明和应用,初步了解转化思想,并培养学生逻辑思维能力、分析问题和解决问题的能力.(难点)学习目标\n导入新课情境引入在△ABC中,AB=AC,倘若不留神,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,请问,有没有办法把原来的等腰三角形画出来?ABCA\n思考:如图,在△ABC中,如果∠B=∠C,那么AB与AC之间有什么关系吗?我测量后发现AB与AC相等.3cm3cm\n讲授新课☆等腰三角形的判定ABC如图,位于海上B、C两处的两艘救生船接到A处遇险船只的报警,当时测∠B=∠C.如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪因素)?互动探究\n已知:如图,在△ABC中,∠B=∠C,那么它们所对的边AB和AC有什么数量关系?建立数学模型:CAB做一做:画一个△ABC,其中∠B=∠C=30°,请你量一量AB与AC的长度,它们之间有什么数量关系,你能得出什么结论?AB=AC你能验证你的结论吗?\n在△ABD与△ACD,∠1=∠2,∴△ABD≌△ACD.∠B=∠C,AD=AD,∴AB=AC.过A作AD平分∠BAC交BC于点D.证明:CAB21D((△ABC是等腰三角形.\n∴AC=AB.()即△ABC为等腰三角形.∵∠B=∠C,()知识要点等腰三角形的判定方法如果一个三角形有两个角相等,那么这个三角形是等腰三角形(简写成“等角对等边”).已知等角对等边在△ABC中,应用格式:BCA((这又是一个判定两条线段相等的根据之一.\nABCD21∵∠1=∠2,∴BD=DC(等角对等边).∵∠1=∠2,∴DC=BCABCD21(等角对等边).错,因为都不是在同一个三角形中.辨一辨:如图,下列推理正确吗?\n例1求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:如图,∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:∵AD∥BC,∴∠1=∠B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等).又∵∠1=∠2,∴∠B=∠C,∴AB=AC(等角对等边).ABCE((12D\n例2已知:如图,AB=DC,BD=CA,BD与CA相交于点E.求证:△AED是等腰三角形.ABCDE证明:∵AB=DC,BD=CA,AD=DA,∴△ABD≌△DCA(SSS),∴∠ADB=∠DAC(全等三角形的对应角相等),∴AE=DE(等角对等边),∴△AED是等腰三角形.\n例3已知:如图,AD∥BC,BD平分∠ABC.求证:AB=ADBADC证明:∵AD∥BC,∴∠ADB=∠DBC.∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD.总结:平分+平行=等腰三角形\n如图,把一张长方形的纸沿着对角线折叠,重合部分是一个等腰三角形吗?为什么?BCADE变式训练解:是。理由如下:由折叠可知,∠EBD=∠CBD.∵AD∥BC,∴∠EDB=∠CBD,∴∠EDB=∠EBD,∴BE=DE,△EBD是等腰三角形.\n练一练:1.在△ABC中,∠A和∠B的度数如下,能判定△ABC是等腰三角形的是()A.∠A=50°,∠B=70°B.∠A=70°,∠B=40°C.∠A=30°,∠B=90°D.∠A=80°,∠B=60°B2.如图,已知OC平分∠AOB,CD∥OB,若OD=3cm,则CD等于_______.3cm\n例4如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的平分线,AE与CD交于点F,求证:△CEF是等腰三角形.证明:∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.\n总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.\n☆等腰三角形的判定定理推论推论1:三个角都相等的三角形是等边三角形.推论2:有一个角是60°的等腰三角形是等边三角形.由等腰三角形的判定定理可以直接得到:\n辩一辩:根据条件判断下列三角形是否为等边三角形.(1)(2)(6)(5)不是是是是是(4)(3)不一定是\n例6如图,在等边三角形ABC中,DE∥BC,求证:△ADE是等边三角形.ACBDE典例精析证明:∵△ABC是等边三角形,∴∠A=∠B=∠C.∵DE//BC,∴∠ADE=∠B,∠AED=∠C.∴∠A=∠ADE=∠AED.∴△ADE是等边三角形.想一想:本题还有其他证法吗?\n证明:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°.∵DE∥BC,∴∠ABC=∠ADE,∠ACB=∠AED.∴∠A=∠ADE=∠AED.∴△ADE是等边三角形.变式1若点D、E在边AB、AC的延长线上,且DE∥BC,结论还成立吗?ADEBC\n变式2若点D、E在边AB、AC的反向延长线上,且DE∥BC,结论依然成立吗?证明:∵△ABC是等边三角形,∴∠BAC=∠B=∠C=60°.∵DE∥BC,∴∠B=∠D,∠C=∠E.∴∠EAD=∠D=∠E.∴△ADE是等边三角形.ADEBC\n变式3:上题中,若将条件DE∥BC改为AD=AE,△ADE还是等边三角形吗?试说明理由.ACBDE证明:∵△ABC是等边三角形,∴∠A=∠B=∠C.∵AD=AE,∴∠ADE=∠B,∠AED=∠C.∴∠A=∠ADE=∠AED.∴△ADE是等边三角形.\n例7等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试证明你的结论.解:△APQ为等边三角形.证明:∵△ABC为等边三角形,∴AB=AC.∵BP=CQ,∠ABP=∠ACQ,∴△ABP≌△ACQ(SAS),∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠PAC=60°,∴∠PAQ=∠CAQ+∠PAC=60°,∴△APQ是等边三角形.\n总结:判定一个三角形是等边三角形有以下方法:一是证明三角形三条边相等;二是证明三角形三个内角相等;三是先证明三角形是等腰三角形,再证明有一个内角等于60°.\n针对训练:如图,等边△ABC中,D、E、F分别是各边上的一点,且AD=BE=CF.求证:△DEF是等边三角形.证明:∵△ABC为等边三角形,且AD=BE=CF∴AF=BD=CE,又∵∠A=∠B=∠C=60°,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=FE,∴△DEF是一个等边三角形.\n当堂练习1.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个2.一个三角形的一个外角为130°,且它恰好等于一个不相邻的内角的2倍.这个三角形是()A.钝角三角形B.直角三角形C.等腰三角形D.等边三角形CA\n13.如图,直线a、b相交于点O,∠1=50°,点A在直线a上,直线b上存在点B,使以点O、A、B为顶点的三角形是等腰三角形,这样的B点有(  )A.1个B.2个C.3个D.4个OabDA\n4.如图,已知∠A=36°,∠DBC=36°,∠C=72°,则∠DBC=_____,∠BDC=_____,图中的等腰三角形有_______________________.36°72°△ABC、△DBA、△BCDABCD5.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为_____.9第4题图第5题图\n6.在等边△ABC中,BD平分∠ABC,BD=BF,则∠CDF的度数是(  )A.10°B.15°C.20°D.25°7.如图,△ABC和△ADE都是等边三角形,已知△ABC的周长为18cm,EC=2cm,则△ADE的周长是cm.ACBDE12B\n8.已知:如图,四边形ABCD中,AB=AD,∠B=∠D.求证:BC=CD.证明:连接BD.∵AB=AD,∴∠ABD=∠ADB.∵∠ABC=∠ADC,∴∠ABC-∠ABD=∠ADC-∠ADB,即∠DBC=∠BDC,∴BC=CD.\n9.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以AB为边在△ABC外作等边△ABD,E是AB的中点,连接CE并延长交AD于F.求证:△AEF≌△BEC.证明:∵△ABD是等边三角形,∴∠DAB=60°,∵∠CAB=30°,∠ACB=90°,∴∠EBC=180°-90°-30°=60°,∴∠FAE=∠EBC,∵E为AB的中点,∴AE=BE,∵∠AEF=∠BEC,∴△AEF≌△BEC(ASA).\n10.在△ABC中,AB=AC,倘若不留神,它的一部分被墨水涂没了,只留下一条底边BC和一个底角∠C,请问,有没有办法把原来的等腰三角形画出来?ABC3种“补出”方法:方法1:量出∠C度数,画出∠B=∠C,∠B与∠C的边相交得到顶点A.方法2:作BC边上的垂直平分线,与∠C的一边相交得到顶点A.方法3:对折.\n课堂小结等腰三角形的判定等角对等边定义注意是指同一个三角形中有两边相等的三角形是等腰三角形推论1.三个角都相等的三角形是等边三角形.2.有一个角是60°的等腰三角形是等边三角形.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2022-08-18 18:00:04 页数:33
价格:¥3 大小:420.66 KB

推荐特供

MORE