CC课件
首页

第3章对圆的进一步认识3.3圆周角2课件(青岛版九上)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/16

2/16

3/16

4/16

剩余12页未读,查看更多内容需下载

3.3圆周角(2)\n学习目标1.了解同弧上圆周角的关系.2.了解直径所对的圆周角的度数.\n复习引入问题1什么是圆周角?特征:①角的顶点在圆上.②角的两边都与圆相交.顶点在圆上,并且两边都和圆相交的角叫圆周角.●OBACDE\n问题2什么是圆周角定理?圆周角等于它所对弧上的圆心角的一半.●OABC●OABC●OABC即∠ABC=∠AOC.\n讲授新课圆周角定理的推论2同弧或等弧上的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.\n如图,在☉O中,D是的中点,BD,AC相交于点E.求证:△ABD∽△EBC.证明:∵D是的中点,∴=.∴∠ABD=∠DBC.又∵∠ADB与∠ACB是所对的圆周角,∴∠ADB=∠ACB.∴△ABD∽△EBC.\n直径所对应的圆周角思考:如图,AC是圆O的直径,则∠ADC=,∠ABC=.90°90°推论:直径所对的圆周角是直角.反之,90°的圆周角所对的弦是直径.\n问题你能确定圆形笑脸的圆心吗?利用三角板在圆中画出两个90°的圆周角,这样就得到两条直径,那么这两条直径的交点就是圆心.\n如图,⊙O的直径AC为10cm,弦AD为6cm.(1)求DC的长;(2)若∠ADC的平分线交⊙O于B,求AB,BC的长.B解:(1)∵AC是直径,∴∠ADC=90°.在Rt△ADC中,\n在Rt△ABC中,AB2+BC2=AC2,(2)∵AC是直径,∴∠ABC=90°.∵BD平∠ADC,∴∠ADB=∠CDB.又∵∠ACB=∠ADB,∠BAC=∠BDC.∴∠BAC=∠ACB,∴AB=BC.B解答圆周角有关问题时,若题中出现“直径”这个条件,则考虑构造直角三角形来求解.归纳\n如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为()A.30°B.45°C.60°D.75°解析:∵BD是⊙O的直径,∴∠BCD=90°.∵∠CBD=30°,∴∠D=60°,∴∠A=∠D=60°.故选C.C练一练\n1.如图,AB是⊙O的直径,C,D是圆上的两点,∠ABD=40°,则∠BCD=____.50°ABOCD2.如图,∠A=50°,∠ABC=60°,BD是⊙O的直径,则∠AEB等于()A.70°B.110°C.90°D.120°BACBODE随堂练习\n3.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,AD为⊙O的直径,AD=6,那么AB的值为(  )A.3B.C.D.2A\n4.如图,点A,B,D,E在⊙O上,弦AE,BD的延长线相交于点C.若AB是⊙O的直径,D是BC的中点.(1)试判断AB,AC之间的大小关系,并给出证明.解:(1)AB=AC.证明如下:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.∵BD=DC,∴AD垂直平分BC,∴AB=AC.\n(2)在上述题设条件下,当△ABC为正三角形时,点E是否为AC的中点?为什么?(2)当△ABC为正三角形时,E是AC的中点.理由如下:连接BE,∵AB为⊙O的直径,∴∠BEA=90°,即BE⊥AC.∵△ABC为正三角形,∴AE=EC,即E是AC的中点.\n圆周角定理推论2推论3直径所所对的圆周角是直角;90°的圆周角所对的弦是直径课堂小结同弧或等弧上的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2022-08-20 13:00:02 页数:16
价格:¥3 大小:330.41 KB

推荐特供

MORE