CC课件
首页

12.3 角的平分线的性质(第2课时)教案(人教版八年级数学上)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/13

2/13

剩余11页未读,查看更多内容需下载

第十二章全等三角形12.3角的平分线的性质第2课时一、教学目标【知识与技能】掌握角平分线性质的逆定理,并能利用这些方法解决简单的数学问题和实际问题.【过程与方法】经历探究角平分线性质逆定理的过程,发展学生合情推理能力和演绎推理能力.【情感、态度与价值观】结合实际,创造丰富的情境,提高学生的学习兴趣,让他们在活动中获得成功的体验,培养学生的探索精神,树立学习的信心.二、课型新授课三、课时第2课时,共2课时。四、教学重难点【教学重点】角平分线性质和判定的应用.【教学难点】\n运用角平分线性质和判定证明及解决实际问题.五、课前准备教师:课件、三角尺、直尺、圆规等。学生:三角尺、直尺、圆规。六、教学过程(一)导入新课小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图,一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是什么?(出示课件2)(二)探索新知1、师生互动,探究角平分线的判定定理教师问1:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺1∶20000)?(出示课件4)师生共同讨论得出答案:这个点应该在角的平分线.\n教师问2:刚才大家对上述问题进行了讨论,并且得出了做法,我们进而从做法中总结出了新的结论:到角的两边距离相等的点在角的平分线上.这个新结论正确吗?(出示课件5)师生讨论后认为需要证明.问题证明:已知:如图,PD⊥OA,PE⊥OB,垂足分别是D,E,PD=PE.求证:点P在∠AOB的平分线上. 教师问3:你能证明上边的问题吗?学生小组讨论并回答:(出示课件7)证明:作射线OP,∵PD⊥OA,PE⊥OB. ∴∠PDO=∠PEO=90°,在Rt△PDO和Rt△PEO中,OP=OP(公共边),PD=PE(已知),∴Rt△PDO≌Rt△PEO(HL).∴∠AOP=∠BOP(全等三角形的对应角相等).∴点P在∠AOB的平分线上. \n教师讲解:由此我们又可以得到一个性质:角的内部到角的两边距离相等的点在角的平分线上.总结点拨:(出示课件8)判定定理: 角的内部到角的两边的距离相等的点在角的平分线上.应用所具备的条件:(1)位置关系:点在角的内部;(2)数量关系:该点到角两边的距离相等.定理的作用:判断点是否在角平分线上.应用格式: ∵PD⊥OA,PE⊥OB,PD=PE.∴点P在∠AOB的平分线上. 教师问4:这个结论与角的平分线的性质在应用上有什么不同?学生讨论得出结论:叫的判定定理可以判定角的平分线,而角的平分线的性质可用来证明线段相等.教师问5:让我们回到刚上课时的问题:怎样找到集贸市场所在点?师生共同解答如下:1.这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500m处.(出示课件9)\n2.在纸上画图时,我们经常以厘米为单位,而题中距离是以米为单位,这就涉及一个单位换算问题.1m=100cm,所以比例尺为1∶20000,其实就是图中1cm表示实际距离200m的意思.如图:第一步:尺规作图作出夹角的角平分线OC.第二步:在射线OC上截取OD=2.5cm,确定D点,D点就是集贸市场所建地了.总结点拨:根据角平分线的判定定理,要求作的点到两边的距离相等,一般需作这两边直线形成的角的平分线,再在这条角平分线上根据要求取点. 教师总结:应用角平分线的性质,可以省去证明三角形全等的步骤,使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,我们可以直接利用性质解决问题.例1:如图,BE⊥AC,CF⊥AB,BE与CF交于点D,DE=DF,连接AD.求证:(1)∠FAD=∠EAD;(2)BD=CD.师生共同解答如下:证明: (1)∵BE⊥AC,CF⊥AB,DE=DF,\n∴AD是∠BAC的平分线,∴∠FAD=∠EAD.(2)∵△ADF与△ADE是直角三角形,DE=DF,AD=AD,∴Rt△ADF≌Rt△ADE(HL),∴∠ADF=∠ADE,∵∠BDF=∠CDE,∴∠ADF+∠BDF=∠ADE+∠CDE,即∠ADB=∠ADC,在△ABD和△ACD中,∴△ABD≌△ACD(AAS),∴BD=CD.总结点拨:要证明一点在角平分线上,只要证明这点到角两边的距离相等即可.2.师生讨论,探究三角形内角平分线的性质教师问6:我们在学习三角形时,知道三角形的三条内角平分线有怎样的特征吗?学生回答:都在三角形的内部并且交于一点.教师问7:请同学分别画出锐角三角形、直角三角形和钝角三角形的三条内角平分线,看是否交于一点呢?(出示课件11)学生做图后回答:三角形的三条角平分线相交于一点.\n教师问8:分别过交点作三角形三边的垂线,用刻度尺量一量,每组垂线段,你发现了什么?学生测量后回答:过交点作三角形三边的垂线段相等.(出示课件12)教师问9:你能证明这个结论吗? 师生共同解答如下:(出示课件13)已知:如图,△ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB,BC,CA的距离相等.证明:过点P作PD,PE,PF分别垂直于AB,BC,CA,垂足分别为D,E,F. ∵BM是△ABC的角平分线,点P在BM上, ∴PD=PE.同理PE=PF. ∴PD=PE=PF. 即点P到三边AB,BC,CA的距离相等. 教师问10:点P在∠A的平分线上吗?这说明三角形的三条角平分线有什么关系? 学生回答:点P在∠A的平分线上. 教师问11:如何证明呢?学生口答证明过程.结论:三角形的三条角平分线交于一点,并且这点到三边的距离相等. (出示课件14)\n总结点拨:(出示课件17)1.应用角平分线性质:存在角平分线条件涉及距离问题2.联系角平分线性质:距离面积S=ch 周长例2:如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等.若∠A=40°,则∠BOC的度数为(  )(出示课件18)师生共同解答如下:解析:由已知,O到三角形三边的距离相等,即三条角 平分线的交点,AO,BO,CO都是角平分线, 所以有∠CBO=∠ABO=∠ABC, ∠BCO=∠ACO=∠ACB, ∠ABC+∠ACB=180°-40°=140°,\n ∠OBC+∠OCB=70°, ∠BOC=180°-70°=110°. 故选A.总结点拨:(出示课件19)由已知,O到三角形三边的距离相等,得O是三角形三条内角平分线的交点,再利用三角形内角和定理即可求出∠BOC的度数.归纳总结:(出示课件20)角平分线的性质角的平分线的判定图形已知条件OP平分∠AOBPD⊥OA于DPE⊥OB于EPD=PEPD⊥OA于DPE⊥OB于E结论PD=PEOP平分∠AOB(三)课堂练习(出示课件23-27)1.如图,某个居民小区C附近有三条两两相交的道路MN,OA,OB,拟在MN上建造一个大型超市,使得它到OA,OB的距离相等,请确定该超市的位置P. \n2.如图所示,已知△ABC中,PE∥AB交BC于点E,PF∥AC交BC于点F,点P是AD上一点,且点D到PE的距离与到PF的距离相等,判断AD是否平分∠BAC,并说明理由. 3.如图,已知∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分线上. 4.如图,直线l1、l2、l3表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,可选择的地址有几处?画出它的位置.参考答案:1.解答如下图:\n2.解:AD平分∠BAC.理由如下: ∵D到PE的距离与到PF的距离相等, ∴点D在∠EPF的平分线上.∴∠1=∠2. 又∵PE∥AB, ∴∠1=∠3. 同理,∠2=∠4. ∴∠3=∠4,∴AD平分∠BAC. 3.证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于M.∵点F在∠BCE的平分线上,FG⊥AE,FM⊥BC. ∴FG=FM.又∵点F在∠CBD的平分线上,FH⊥AD,FM⊥BC, ∴FM=FH,∴FG=FH. ∴点F在∠DAE的平分线上. 4.答案如下图:\n(四)课堂小结今天我们学了哪些内容:角的平分线的性质(2)性质:角的内部到角的两边距离相等的点在角的平分线上.(五)课前预习预习下节课(13.1.1)的相关内容。1.知道轴对称图形、轴对称、对称轴、对称点的概念.2.了解轴对称的性质七、课后作业1、教材50页练习1,22、如图(1),已知AC∥BD,AE、BE分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由.   八、板书设计:\n九、教学反思:1.本节课的内容是角平分线的判定,有前面角的平分线的性质,这里的教学过程重点应通过学生作图理解判定中“角的内部”四个字的必要性,在角的外部有没有满足条件的点,引导学生从垂线的角度,点到线段、射线的距离方面加以理解.2.本教学设计本着以观察为起点,以问题为主线,以培养能力为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则,情景引入,激发兴趣.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2022-09-07 11:00:05 页数:13
价格:¥3 大小:292.56 KB

推荐特供

MORE