CC课件
首页

24.2.2 直线和圆的位置关系 (第3课时)(人教版九年级数学上)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/18

2/18

剩余16页未读,查看更多内容需下载

24.2点和圆、直线和圆的位置关系24.2.2直线和圆的位置关系(第3课时)一、教学目标【知识与技能】理解掌握切线长的概念和切线长定理,了解三角形的内切圆和三角形的内心等概念.【过程与方法】利用圆的轴对称性帮助探求切线长的特征.结合求证三角形内面积最大的圆的问题,掌握三角形内切圆和内心的概念.【情感态度与价值观】经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力.二、课型新授课三、课时第3课时,共3课时。四、教学重难点【教学重点】切线长定理及其应用.【教学难点】内切圆、内心的概念及运用.五、课前准备\n课件、图片、圆规、直尺等.六、教学过程(一)导入新课同学们玩过空竹和悠悠球吗?在空竹和悠悠球的旋转的那一瞬间,你能从中抽象出什么样数学图形?(出示课件2)(二)探索新知探究一切线长定理及应用教师问:上节课我们学习了过圆上一点作已知圆的切线(如左图所示),如果点P是圆外一点,又怎么作该圆的切线呢?过圆外的一点作圆的切线,可以作几条?(出示课件4)学生思考,尝试作图并解答.出示课件5:出示定义:切线长的定义:切线上一点到切点之间的线段的长叫作这点到圆的切线长.\n教师问:切线长与切线的区别在哪里?学生思考后师生共同总结:①切线是直线,不能度量.②切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.教师问:PA为☉O的一条切线,沿着直线PO对折,设圆上与点A重合的点为B.OB是☉O的一条半径吗?PB是☉O的切线吗?PA、PB有何关系?∠APO和∠BPO有何关系?(出示课件6)学生思考后,尝试利用图形轴对称性解释.教师归纳:(出示课件7)切线长定理:过圆外一点作圆的两条切线,两条切线长相等.圆心与这一点的连线平分两条切线的夹角.几何语言:∵PA、PB分别切☉O于A、B,\n∴PA=PB,∠OPA=∠OPB.出示课件8:已知,如图PA、PB是☉O的两条切线,A、B为切点.求证:PA=PB,∠APO=∠BPO.学生观察分析,合作交流后师生共同解答.证明:∵PA切☉O于点A,∴OA⊥PA.同理可得OB⊥PB.∵OA=OB,OP=OP,∴Rt△OAP≌Rt△OBP(HL),∴PA=PB,∠APO=∠BPO.教师问:若连接两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.(出示课件9)学生操作后观察得:OP垂直平分AB.师生共同证明如下.证明:∵PA,PB是⊙O的切线,点A,B是切点,∴PA=PB,∠OPA=∠OPB.∴△PAB是等腰三角形,PM为顶角的平分线\n∴OP垂直平分AB.教师问:若延长PO交⊙O于点C,连接CA、CB,你又能得出什么新的结论?并给出证明.(出示课件10)学生操作后观察得:CA=CB.师生共同证明如下.证明:∵PA,PB是⊙O的切线,点A,B是切点,∴PA=PB,∠OPA=∠OPB.∴PC=PC.∴△PCA≌△PCB,∴AC=BC.出示课件11:例1已知:如图,四边形ABCD的边AB、BC、CD、DA与⊙O分别相切于点E、F、G、H.求证:AB+CD=AD+BC.学生独立思考后师生共同解决如下.证明:∵AB、BC、CD、DA与⊙O分别相切于点E、F、G、H,∴AE=AH,BE=BF,CG=CF,DG=DH.\n∴AE+BE+CG+DG=AH+BF+CF+DH.∴AB+CD=AD+BC.巩固练习:(出示课件12)PA、PB是☉O的两条切线,A,B是切点,OA=3.(1)若AP=4,则OP=;(2)若∠BPA=60°,则OP=.学生自主思考后口答:⑴5;⑵6.出示课件13:例2为了测量一个圆形铁环的半径,某同学采用了如下办法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,按如图所示的方法得到相关数据,进而可求得铁环的半径,若三角板与圆相切且测得PA=5cm,求铁环的半径.教师分析:欲求半径OP,取圆的圆心为O,连OA、OP,由切线性质知△OPA为直角三角形,从而在Rt△OPA中由勾股定理易求得半径.师生共同解答.(出示课件14)解:过O作OQ⊥AB于Q,设铁环的圆心为O,连接OP、OA.\n∵AP、AQ为⊙O的切线,∴AO为∠PAQ的平分线,即∠PAO=∠QAO.又∠BAC=60°,∠PAO+∠QAO+∠BAC=180°,∴∠PAO=∠QAO=60°.在Rt△OPA中,PA=5,∠POA=30°,即铁环的半径为巩固练习:(出示课件15)如图,小敏家厨房一墙角处有一自来水管,装修时为了美观,准备用木板从AB处将水管密封起来,互相垂直的两墙面与水管分别相切于D、E两点,经测量发现AD和BE的长恰是方程x2-25x+150=0的两根(单位:cm),则该自来水管的半径为cm(AD<BE).学生思考后独立解决.解析:设圆心为O,连接OD、OE,x2-25x+150=0,(x-10)(x-15)=0,解得x1=10,x2=15,∵AD<BE,∴AD=10,BE=15,设半径为r,又AB=AD+BE=25,∴(AD+r)2+(BE+r)2=AB2,∴(10+r)2+(15+r)2=252,解得r=5.探究二三角形的内切圆及作法\n出示课件16:小明在一家木料厂上班,工作之余想对厂里的三角形废料进行加工:裁下一块圆形用料,怎样才能使裁下的圆的面积尽可能大呢?教师问:如果最大圆存在,它与三角形三边应有怎样的位置关系?(出示课件17)学生答:最大的圆与三角形三边都相切.教师问:如何求作一个圆,使它与已知三角形的三边都相切?(1)如果半径为r的☉I与△ABC的三边都相切,那么圆心I应满足什么条件?(出示课件18)学生答:圆心I到三角形三边的距离相等,都等于r.教师问:(2)在△ABC的内部,如何找到满足条件的圆心I呢?学生答:圆心I应是三角形的三条角平分线的交点.教师问:为什么?学生答:三角形三条角平分线交于一点,这一点与三角形的三边距离相等.出示课件19:做一做已知:△ABC.求作:和△ABC的各边都相切的圆.引导学生分析作图的关键,师生共同作图如下:\n作法:1.作∠B和∠C的平分线BM和CN,交点为O.2.过点O作OD⊥BC.垂足为D.3.以O为圆心,OD为半径作圆O.☉O就是所求的圆.教师归纳总结:(出示课件20)1.与三角形三边都相切的圆叫作三角形的内切圆.2.三角形内切圆的圆心叫做这个三角形的内心.3.这个三角形叫做这个圆的外切三角形.如图,☉I是△ABC的内切圆,点I是△ABC的内心,△ABC是☉I的外切三角形.出示课件21:例已知:△ABC(如图),(1)求作△ABC的内切圆☉I(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).(2)在题(1)已经作好的图中,若∠BAC=88°,求∠BIC的度数.\n学生观察思考交流后,师生共同解答.(出示课件22,23)解析:(1)①以A为圆心、任意长为半径画圆,分别交AC、AB于点H、G;②分别以H、G为圆心,以大于HG的长为半径画圆,两圆相交于K点,连接AK,则AK即为∠BAC的平分线;③同理作出∠ABC的平分线BF,交AK于点I,则I即为△ABC内切圆的圆心;④过I作IM⊥BC于M,以I为圆心,IM为半径画圆,则☉I即为所求圆.(2)∵∠BAC=88°,∴∠ABC+∠ACB=180°-88°=92°,∴∠IBC+∠ICB=(∠ABC+∠ACB)=×92°=46°,∴∠BIC=180°-46°=134°.巩固练习:(出示课件24)△ABC的内切圆半径为r,△ABC的周长为l,求△ABC的面积.(提示:设内心为O,连接OA、OB、OC.)学生思考交流后自主解决.解:设AB=c,BC=a,AC=b.\n则S△OBC=ar,S△OBA=cr,S△OAC=br,S△ABC=S△OBC+S△OBA+S△OAC=ar+cr+br=r(a+c+b)=lr.探究三三角形的内心的定义和性质教师问:如图,☉I是△ABC的内切圆,那么线段IA,IB,IC有什么特点?(出示课件25)学生答:线段IA,IB,IC分别是∠A,∠B,∠C的平分线.教师问:如图,分别过点作AB、AC、BC的垂线,垂足分别为E、F,G,那么线段IE、IF、IG之间有什么关系?(出示课件26)学生答:IE=IF=IG.教师归纳:三角形内心的性质(出示课件27)三角形的内心在三角形的角平分线上.三角形的内心到三角形的三边距离相等.\n出示课件28:例如图,△ABC中,∠B=43°,∠C=61°,点I是△ABC的内心,求∠BIC的度数.教师分析后学生独立解答.解:连接IB,IC.∵点I是△ABC的内心,∴IB,IC分别是∠B,∠C的平分线,在△IBC中,巩固练习:(出示课件29)如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠PAB=.学生自主思考后独立解答.解析:∵点P是△ABC的内心,∴PB平分∠ABC,PA平分∠BAC,PC平分∠ACB,∴∠PBC+∠PCA+∠PAB=90°.出示课件30,师生共同总结深化认知.名称确定方法图形性质\n外心:三角形外接圆的圆心三角形三边中垂线的交点1.OA=OB=OC;2.外心不一定在三角形的内部内心:三角形内切圆的圆心三角形三条角平分线的交点1.到三边的距离相等;2.OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;3.内心在三角形内部(三)课堂练习(出示课件31-36)1.如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是(  )A.3B.C.6D.2.如图,菱形ABOC的边AB、AC分别与⊙O相切于点D、E.若点D是AB的中点,则∠DOE=.\n3.如图,PA、PB是☉O的两条切线,切点分别是A、B,如果AP=4,∠APB=40°,则∠APO=,PB=.4.如图,已知点O是△ABC的内心,且∠ABC=60°,∠ACB=80°,则∠BOC=.5.如图,在△ABC中,点I是内心,(1)若∠ABC=50°,∠ACB=70°,∠BIC=_____.(2)若∠A=80°,则∠BIC=_____度.(3)若∠BIC=100°,则∠A=_____度.(4)试探索:∠A与∠BIC之间存在怎样的数量关系?6.如图所示,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于E,与AC相切于点D.求证:DE∥OC.\n7.如图,△ABC中,I是内心,∠A的平分线和△ABC的外接圆相交于点D.求证:DI=DB.参考答案:1.D解析:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=,∴光盘的直径为.2.60°解析:连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与⊙O相切于点D,∴OD⊥AB,∵点D是AB的中点,\n∴直线OD是线段AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∵AB与⊙O相切于点D,∴OD⊥AB,∴∠AOD=∠AOB=30°,同理,∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°.3.20°;44.110°5.解:⑴120°;⑵130;⑶20;⑷6.证明:连接OD,∵AC切⊙O于点D,∴OD⊥AC,∴∠ODC=∠B=90°.在Rt△OCD和Rt△OCB中,OD=OB,OC=OC,∴Rt△ODC≌Rt△OBC(HL),∴∠DOC=∠BOC.∵OD=OE,∴∠ODE=∠OED,∵∠DOB=∠ODE+∠OED,\n∴∠BOC=∠OED,∴DE∥OC.7.证明:连接BI.∵I是△ABC的内心,∴∠BAD=∠CAD,∠ABI=∠CBI.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BID=∠BAD+∠ABI,∠IBD=∠CBI+∠CBD,∴∠BID=∠IBD,∴BD=ID.(四)课堂小结这节课学习了哪几个重要知识点?你有哪些疑惑?(五)课前预习预习下节课(24.3第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:\n九、教学反思:本节课的教学是直线与圆的位置关系的继续,从探究切线长定理开始,通过如何作一个三角形的内切圆,引出三角形的内切圆和三角形内心的概念,经历这些探究过程,能使学生掌握图形的基本知识和基本技能,并能解决简单的问题.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2022-09-07 12:00:08 页数:18
价格:¥3 大小:800.28 KB

推荐特供

MORE