CC课件
首页

北师大版九下数学3.7切线长定理课件

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/26

2/26

3/26

4/26

剩余22页未读,查看更多内容需下载

*3.7切线长定理导入新课讲授新课当堂练习课堂小结第三章圆九年级数学下(BS)教学课件 1.理解切线长的概念;2.掌握切线长定理,初步学会运用切线长定理进行计算与证明.(重点)学习目标 POO.PBAAB问题1通过前面的学习,我们了解到如何过圆上一点作已知圆的切线(如左图所示),如果点P是圆外一点,又怎么作该圆的切线呢?问题2过圆外一点P作圆的切线,可以作几条?请欣赏小颖同学的作法(如右下图所示)!直径所对的圆周角是直角.导入新课复习引入 P1.切线长的定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫作切线长.AO①切线是直线,不能度量.②切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2.切线长与切线的区别在哪里?讲授新课切线长的定义一 切线长定理二合作探究BPOA问题在透明纸上画出下图,设PA,PB是圆O的两条切线,A,B是切点,沿直线OP对折图形,你能猜测一下PA与PB,∠APO与∠BPO分别有什么关系吗?猜测PA=PB,∠APO=∠BPO 推导与验证如图,连接OA,OB.∵PA,PB与⊙O相切,点A,B是切点∴OA⊥PA,OB⊥PB即∠OAP=∠OBP=90°∵OA=OB,OP=OP∴Rt△AOP≌Rt△BOP(HL)∴PA=PB∠OPA=∠OPBBPOA 切线长定理:过圆外一点引所画的圆的两条切线,它们的切线长相等.这一点和圆心的连线平分这两条切线的夹角.PA、PB分别切☉O于A、BPA=PB∠OPA=∠OPB几何语言:切线长定理为证明线段相等、角相等提供了新的方法.注意要点归纳BPOA BPOA1.PA、PB是⊙O的两条切线,A,B是切点,OA=3.(1)若AP=4,则OP=;(2)若∠BPA=60°,则OP=.56练一练 2.PA、PB是☉O的两条切线,A、B为切点,直线OP交☉O于点D、E,交AB于C.(1)写出图中所有的垂直关系;OA⊥PA,OB⊥PB,AB⊥OP.(2)写出图中与∠OAC相等的角;BPOACED∠OAC=∠OBC=∠APC=∠BPC. △AOP≌△BOP,△AOC≌△BOC,△ACP≌△BCP.(4)写出图中所有的等腰三角形.△ABP△AOB(3)写出图中所有的全等三角形;BPOACED OPABCED解析:连接OA、OB、OC、OD和OE.∵PA、PB是☉O的两条切线,点A、B是切点,∴PA=PB=7.∠PAO=∠PBO=90°.∠AOB=360°-∠PAO-∠PBO-∠P=140°.⑴△PDE的周长是;例1如图,PA、PB是☉O的两条切线,点A、B是切点,在弧AB上任取一点C,过点C作☉O的切线,分别交PA、PB于点D、E.已知PA=7,∠P=40°.则⑵∠DOE=____.典例精析 又∵DC、DA是☉O的两条切线,点C、A是切点,∴DC=DA.同理可得CE=EB.l△PDE=PD+DE+PE=PD+DC+CE+PE=PA+PB=14.OPABCED∵OA=OC,OD=OD,∴△AOD≌△COD,∴∠DOC=∠DOA=∠AOC.同理可得∠COE=∠COB.∠DOE=∠DOC+∠COE=(∠AOC+∠COB)=70°. (3)连接圆心和圆外一点.(2)连接两切点;(1)分别连接圆心和切点;方法归纳 例2△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=13cm,BC=14cm,CA=9cm,求AF、BD、CE的长.解:设AF=xcm,则AE=xcm.∴CE=CD=AC-AE=(9-x)cm,BF=BD=AB-AF=(13-x)cm.想一想:图中你能找出哪些相等的线段?理由是什么?ACBEDFO 由BD+CD=BC,可得(13-x)+(9-x)=14,∴AF=4cm,BD=9cm,CE=5cm.方法小结:关键是熟练运用切线长定理,将相等线段转化集中到某条边上,从而建立方程.解得x=4.ACBEDFO 例3如图,Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,⊙O为Rt△ABC的内切圆.求:Rt△ABC的内切圆的半径r.∵⊙O与Rt△ABC的三边都相切∴AD=AF,BE=BF,CE=CD解:设Rt△ABC的内切圆与三边相切于D、E、F,连接OD、OE、OF,则OD⊥AC,OE⊥BC,OF⊥AB.B·ACEDFO 设AD=x,BE=y,CE=r则有x+r=by+r=ax+y=c解得r=a+b-c2B·ACEDFO 设Rt△ABC的直角边为a、b,斜边为c,则Rt△ABC的内切圆的半径r=或r=(前面课时已证明).a+b-c2aba+b+c知识拓展 20°41.如图,PA、PB是⊙O的两条切线,切点分别是A、B,如果AP=4,∠APB=40°,则∠APO=,PB=.BPOA第1题当堂练习 110°2.如图,已知点O是△ABC的内心,且∠ABC=60°,∠ACB=80°,则∠BOC=.ABCO 3.如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠ACB=70°,那么∠OPA的度数是________度.20 4.如图,PA、PB是⊙O的两条切线,切点为A、B,∠P=50°,点C是⊙O上异于A、B的点,则∠ACB=.65°或115°BPOA第3题 5.△ABC的内切圆☉O与三边分别切于D、E、F三点,如图,已知AF=3,BD+CE=12,则△ABC的周长是.ABCFEDO第3题30 拓展提升:6.直角三角形的两直角边分别是3cm,4cm,试问:(1)它的外接圆半径是cm;内切圆半径是cm?(2)若移动点O的位置,使☉O保持与△ABC的边AC、BC都相切,求☉O的半径r的取值范围.·ABCEDFO1 解:设BC=3cm,由题意可知与BC、AC相切的最大圆与BC、AC的切点分别为B、D,连接OB、OD,则四边形BODC为正方形.·ABODC∴OB=BC=3cm,∴半径r的取值范围为0<r≤3cm. 切线长切线长定理作用提供了证线段和角相等的新方法辅助线分别连接圆心和切点;连接两切点;连接圆心和圆外一点.三角形内切圆运用切线长定理,将相等线段转化集中到某条边上,从而建立方程.应用重要结论课堂小结只适合于直角三角形

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2021-12-11 09:06:31 页数:26
价格:¥3 大小:679.00 KB

推荐特供

MORE