CC课件
首页

北师大版九下数学2.3确定二次函数的表达式2教案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

2.3确定二次函数的表达式教学目标:1.能根据实际问题列出函数关系式、2.使学生能根据问题的实际情况,确定函数自变量x的取值范围。3.通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。重点难点:根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围,既是教学的重点又是难点。教学过程:一、复习旧知1.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。(1)y=6x2+12x;(2)y=-4x2+8x-102.以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少?二、范例有了前面所学的知识,现在就可以应用二次函数的知识去解决第2页提出的两个实际问题;例1、要用总长为20m的铁栏杆,一面靠墙,围成一个矩形的花圃,怎样围法才能使围成的花圃的面积最大?解:设矩形的宽AB为xm,则矩形的长BC为(20-2x)m,由于x>0,且20-2x>O,所以O<x<1O。围成的花圃面积y与x的函数关系式是y=x(20-2x)即y=-2x2+20x配方得y=-2(x-5)2+50所以当x=5时,函数取得最大值,最大值y=50。因为x=5时,满足O<x<1O,这时20-2x=10。所以应围成宽5m,长10m的矩形,才能使围成的花圃的面积最大。例2.某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件。将这种商品的售价降低多少时,能使销售利润最大?教学要点(1)学生阅读第2页问题2分析,(2)请同学们完成本题的解答;(3)教师巡视、指导;(4)教师给出解答过程:解:设每件商品降价x元(0≤x≤2),该商品每天的利润为y元。商品每天的利润y与x的函数关系式是:y=(10-x-8)(100+1OOx)即y=-1OOx2+1OOx+200配方得y=-100(x-)2+225因为x=时,满足0≤x≤2。所以当x=时,函数取得最大值,最大值y=225。 所以将这种商品的售价降低÷元时,能使销售利润最大。例3。用6m长的铝合金型材做一个形状如图所示的矩形窗框。应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?先思考解决以下问题:(1)若设做成的窗框的宽为xm,则长为多少m?(m)(2)根据实际情况,x有没有限制?若有跟制,请指出它的取值范围,并说明理由。让学生讨论、交流,达成共识:根据实际情况,应有x>0,且>0,即解不等式组,解这个不等式组,得到不等式组的解集为O<x<2,所以x的取值范围应该是0<x<2。(3)你能说出面积y与x的函数关系式吗?(y=x·,即y=-x2+3x)详细解答课本。小结:让学生回顾解题过程,讨论、交流,归纳解题步骤:(1)先分析问题中的数量关系,列出函数关系式;(2)研究自变量的取值范围;(3)研究所得的函数;(4)检验x的取值是否在自变量的取值范围内,并求相关的值:(5)解决提出的实际问题。三、课堂练习:练习第1、2、3题。四、小结: 1.通过本节课的学习,你学到了什么知识?存在哪些困惑?2.谈谈你的收获和体会。五、作业:教后反思:

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2021-12-11 09:06:37 页数:2
价格:¥3 大小:548.05 KB

推荐特供

MORE