CC课件
首页

24.1.4 圆周角课件

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/42

2/42

3/42

4/42

剩余38页未读,查看更多内容需下载

24.1圆的有关性质24.1.4圆周角人教版数学九年级上册\n问题1:什么叫圆心角?指出图中的圆心角?顶点在圆心的角叫圆心角,∠BOC.问题2:如图,∠BAC的顶点和边有哪些特点?A∠BAC的顶点在☉O上,角的两边分别交☉O于B、C两点.导入新知\n1.理解圆周角的概念,会叙述并证明圆周角定理.3.理解掌握圆周角定理的推论及其证明过程.2.掌握圆周角与圆心角的关系并能运用圆周角定理解决简单的几何问题.4.掌握圆内接多边形的概念及圆内接四边形的性质并能运用其性质进行计算.素养目标\n顶点在圆上,并且两边都与圆相交的角叫做圆周角.(两个条件必须同时具备,缺一不可)探究新知圆周角的定义知识点1\n·COAB·COB·COBAA·COAB·COB·COBAA练一练:下列各图中的∠BAC是否为圆周角并简述理由.(2)(1)(3)(5)(6)顶点不在圆上顶点不在圆上边AC没有和圆相交√√√探究新知(4)\n如图,连接BO、CO,得圆心角∠BOC.试猜想∠BAC与∠BOC存在怎样的数量关系.探究新知圆周角定理及其推论知识点2测量与猜想\n圆心O在∠BAC的内部圆心O在∠BAC的一边上圆心O在∠BAC的外部探究新知推导与论证\n圆心O在∠BAC的一边上(特殊情形)OA=OC∠A=∠C∠BOC=∠A+∠C证明:探究新知\nOABCD圆心O在∠BAC的内部证明:连接AO并延长交⊙O于D.探究新知\nBCOAD圆心O在∠BAC的外部证明:连接AO并延长交⊙O于点D.探究新知\n探究新知圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半;\n问题1如图,OB,OC都是⊙O的半径,点A,D是上任意两点,连接AB,AC,BD,CD.∠BAC与∠BDC相等吗?请说明理由.D∴∠BAC=∠BDC.答:相等.证明:在⊙O中,∵探究新知互动探究\nDABOCEF问题2如图,若∠A与∠B相等吗?答:相等.想一想:(1)反过来,若∠A=∠B,那么成立吗?(2)若CD是直径,你能求出∠A的度数吗?证明:连接OC,OE,OD,OF,成立90°探究新知\nA1A2A3探究新知圆周角定理的推论同弧或等弧所对的圆周角相等.\n试一试如图,点A、B、C、D在☉O上,点A与点D在点B、C所在直线的同侧,∠BAC=35º.(1)∠BOC=º,理由是;(2)∠BDC=º,理由是.7035同弧所对的圆周角相等一条弧所对的圆周角等于它所对的圆心角的一半探究新知\n如图,线段AB是☉O的直径,点C是☉O上的任意一点(除点A、B外),那么,∠ACB就是直径AB所对的圆周角,想一想,∠ACB会是怎样的角?·OACB解:∵OA=OB=OC,∴△AOC、△BOC都是等腰三角形.∴∠OAC=∠OCA,∠OBC=∠OCB.又∵∠OAC+∠OBC+∠ACB=180°.∴∠ACB=∠OCA+∠OCB=180°÷2=90°.探究新知\n探究新知圆周角和直径的关系半圆或直径所对的圆周角是直角,90°的圆周角所对的弦是直径.\n例1如图,AB是☉O的直径,∠A=80°.求∠ABC的大小.OCAB解:①∵AB是☉O的直径,∴∠ACB=90°∴∠ABC=180°-∠A-∠ACB=180°-90°-80°=10°.利用圆周角定理及推论求角的度数素养考点1探究新知\n如图,AB是⊙O的直径,∠A=10°,则∠ABC=______.巩固练习80°\n例2如图,分别求出图中∠x的大小.60°x30°20°x解:(1)∵同弧所对圆周角相等,∴∠x=60°.ADBEC(2)连接BF,F∵同弧所对圆周角相等,∴∠ABF=∠D=20°,∠FBC=∠E=30°.∴∠x=∠ABF+∠FBC=50°.60°xABDC探究新知\n如图,正方形ABCD的顶点都在☉O上,P是弧DC上的一点,则∠BPC=_____.解析:连接BD,则BD是直径,∴△BCD是等腰直角三角形,∴∠BDC=45°,∴∠BPC=∠BDC=45°.巩固练习45°\n例3如图,⊙O的直径AC为10cm,弦AD为6cm.(1)求DC的长;(2)若∠ADC的平分线交⊙O于B,求AB、BC的长.B解:(1)∵AC是直径,∴∠ADC=90°.在Rt△ADC中,利用圆周角定理及推论进行计算及证明线段相等素养考点2探究新知\n在Rt△ABC中,AB2+BC2=AC2,(2)∵AC是直径,∴∠ABC=90°.∵BD平分∠ADC,∴∠ADB=∠CDB.又∵∠ACB=∠ADB,∠BAC=∠BDC.∴∠BAC=∠ACB,∴AB=BC.B解题妙招在圆周角问题中,若题干中出现“直径”这个条件,则找直径所对的圆周角,通过构造直角三角形来解决.探究新知∴\n如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为()A.30°B.45°C.60°D.75°C巩固练习\n如果一个多边形所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.探究新知圆内接四边形知识点3\n如图,四边形ABCD为⊙O的内接四边形,⊙O为四边形ABCD的外接圆.猜想:∠A与∠C,∠B与∠D之间的关系为:∠A+∠C=180º,∠B+∠D=180º.想一想:如何证明你的猜想呢?探究新知探究性质\n∵弧BCD和弧BAD所对的圆心角的和是周角,∴∠A+∠C=180°,同理∠B+∠D=180°,推论:圆内接四边形的对角互补.证明:探究新知\nCODBA∵弧BCD和弧BAD所对的圆心角的和是周角,∴∠A+∠C=180°,同理∠B+∠D=180°,E∵∠BCD+∠DCE=180°.∴∠A=∠DCE.想一想:图中∠A与∠DCE的大小有何关系?探究新知\n推论:圆的内接四边形的任何一个外角都等于它的内对角.CODBAE探究新知\n例如图,AB为⊙O的直径,CF⊥AB于E,交⊙O于D,AF交⊙O于G.求证:∠FGD=∠ADC.证明:∵四边形ACDG内接于⊙O,∴∠FGD=∠ACD.又∵AB为⊙O的直径,CF⊥AB于E,∴AB垂直平分CD,∴AC=AD,∴∠ADC=∠ACD,∴∠FGD=∠ADC.素养考点3圆内接四边形性质的应用素养考点探究新知\n如图,在⊙O的内接四边形ABCD中,∠BOD=120°,那么∠BCD是()A.120°B.100°C.80°D.60°A巩固练习\n1.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是(  )A.25°B.27.5°C.30°D.35°D链接中考\n2.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°解析:圆上取一点A,连接AB,AD,∵点A、B、C、D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°.D链接中考\n1.判断.(1)同一个圆中等弧所对的圆周角相等()(2)相等的弦所对的圆周角也相等()(3)同弦所对的圆周角相等()√××课堂检测基础巩固题\n2.已知△ABC的三个顶点在⊙O上,∠BAC=50°,∠ABC=47°,则∠AOB=.BACO166°课堂检测\n3.如图,已知BD是⊙O的直径,⊙O的弦AC⊥BD于点E,若∠AOD=60°,则∠DBC的度数为()A.30°B.40°C.50°D.60°A课堂检测\nABCDO4.如图,四边形ABCD内接于⊙O,如∠BOD=130°则∠BCD的度数是()A.115°B.130°C.65°D.50°C课堂检测\nAOBC∴∠ACB=2∠BAC.证明:如图,OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC.∠AOB=2∠BOC,课堂检测能力提升题∵\n船在航行过程中,船长通过测定角数来确定是否遇到暗礁,如图,A、B表示灯塔,暗礁分布在经过A、B两点的一个圆形区域内,优弧AB上任一点C都是有触礁危险的临界点,∠ACB就是“危险角”,当船位于安全区域时,∠α与“危险角”有怎样的大小关系?课堂检测拓广探索题\n解:当船位于安全区域时,即船位于暗礁区域外(即⊙O外),与两个灯塔的夹角∠α小于“危险角”.即:在⊙O中,∠ACB=∠AEB∠AEB>∠α∠ACB>∠α.课堂检测\n圆心角类比圆周角圆周角定义圆周角定理圆周角定理的推论在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等1.90°的圆周角所对的弦是直径;2.圆内接四边形的对角互补1.顶点在圆上,2.两边都与圆相交的角(二者必须同时具备)圆周角与直径的关系半圆或直径所对的圆周角是直角课堂小结\n课后作业作业内容教材作业从课后习题中选取自主安排配套练习册练习

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2022-09-21 17:00:05 页数:42
价格:¥3 大小:824.56 KB

推荐特供

MORE