沪科版九下数学26.2第2课时利用画树状图求概率课件
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1/30
2/30
3/30
4/30
剩余26页未读,查看更多内容需下载
导入新课讲授新课当堂练习课堂小结26.2等可能情形下的概率计算第26章概率初步第2课时利用画树状图求概率,学习目标1.进一步理解等可能事件概率的意义.2.学习运用树状图计算事件的概率.3.进一步学习分类思想方法,掌握有关数学技能.,导入新课某校举办“汉字听写”大赛,现要从A、B两位男生和C、D两位女生中,选派学生代表本班参加大赛.如果随机选派两位学生参赛,求四人中恰好选派一男一女两位同学参赛的概率.问题引入,讲授新课利用画树状图法求概率一问题1抛掷一枚均匀的硬币,出现正面向上的概率是多少?P(正面向上)=问题2同时抛掷两枚均匀的硬币,出现正面向上的概率是多少?可能出现的结果有(反,反)P(正面向上)=还有别的方法求问题2的概率吗?(正,正)(正,反)(反,正)合作探究,同时抛掷两枚均匀的硬币,出现正面向上的概率是多少?开始第2枚第1枚正反正反正正结果(反,反)(正,正)(正,反)(反,正)P(正面向上)=列树状图求概率,树状图的画法一个试验第一个因素第二个因素如一个试验中涉及2个因数,第一个因数中有2种可能情况;第二个因数中有3种可能的情况.AB123123则其树状图如图.n=2×3=6树状图法:按事件发生的次序,列出事件可能出现的结果.知识要点,问题教材P99例5的题干.尝试用树状图法列出小明和小华所玩游戏中所有可能出现的结果,并求出事件A,B,C的概率.A:“小明胜”B:“小华胜”C:“平局”合作探究,解:小明小华结果开始一次游戏共有9个可能结果,而且它们出现的可能性相等.,因此,P(A)=事件C发生的所有可能结果:(石头,石头)(剪刀,剪刀)(布,布).事件A发生的所有可能结果:(石头,剪刀)(剪刀,布)(布,石头);事件B发生的所有可能结果:(石头,剪刀)(剪刀,布)(布,石头);P(B)=P(C)=,画树状图求概率的基本步骤方法归纳(1)明确一次试验的几个步骤和顺序;(2)画树状图列举一次试验的所有可能结果;(3)数出随机事件A包含的结果数m,试验的所有可能结果数n;(4)用概率公式进行计算.,典例精析例1某班有1名男生、2名女生在校文艺演出中获演唱奖,另有2名男生、2名女生获演奏奖.从获演唱奖和演奏奖的学生中各任选一人去领奖,求两人都是女生的概率.解:设两名领奖学生都是女生的事件为A,两种奖项各任选1人的结果用“树状图”来表示.,开始获演唱奖的获演奏奖的男女''女'女1男2男1女2女1男2男1女1男2男1女2女2共有12种结果,且每种结果出现的可能性相等,其中2名都是女生的结果有4种,所以事件A发生的概率为P(A)=.计算等可能情形下概念的关键是确定所有可能性相等的结果总数n和求出事件A发生的结果总数m,“树状图”能帮助我们有序的思考,不重复,不遗漏地求出n和m.,例2甲、乙、丙三人做传球的游戏,开始时,球在甲手中,每次传球,持球的人将球任意传给其余两人中的一人,如此传球三次.(1)写出三次传球的所有可能结果(即传球的方式);,解:第二次第三次结果开始:甲共有8种可能的结果,且每种结果出现的可能性相同.乙丙第一次甲甲丙乙甲甲丙丙乙乙乙丙(丙,乙,丙)(乙,甲,丙)(乙,丙,甲)(乙,丙,乙)(丙,甲,乙)(丙,甲,丙)(丙,乙,甲)(乙,甲,乙),解:传球三次后,球又回到甲手中,事件A发生可能出现的结果有(乙,丙,甲),(丙,乙,甲)2种.(2)指定事件A:“传球三次后,球又回到甲的手中”,写出A发生的所有可能结果;(3)求P(A).解:P(A)=.,方法归纳当试验包含两步时,列表法比较方便;当然,此时也可以用树状图法;当事件要经过多个(三个或三个以上)步骤完成时,应选用树状图法求事件的概率.思考:你能够用列表法写出3次传球的所有可能结果吗?若再用列表法表示所有结果已经不方便!,练一练1.经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率:(1)三辆车全部继续直行;(2)两车向右,一车向左;(3)至少两车向左.,第一辆左右左右左直右第二辆第三辆直直左右直左右直左直右左直右左直右左直右左直右左直右左直右左直右共有27种行驶方向(2)P(两车向右,一车向左)=;(3)P(至少两车向左)=7,2.现在学校决定由甲同学代表学校参加全县的诗歌朗诵比赛,甲同学有3件上衣,分别为红色(R)、黄色(Y)、蓝色(B),有2条裤子,分别为蓝色(B)和棕色(b)。甲同学想要穿蓝色上衣和蓝色裤子参加比赛,你知道甲同学任意拿出1件上衣和1条裤子,恰好是蓝色上衣和蓝色裤子的概率是多少吗?上衣:裤子:,解:用“树状图”列出所有可能出现的结果:每种结果的出现是等可能的.“取出1件蓝色上衣和1条蓝色裤子”记为事件A,那么事件A发生的概率是P(A)=所以,甲同学恰好穿上蓝色上衣和蓝色裤子的概率是开始上衣裤子所有可能出现的结果,当堂练习1.a、b、c、d四本不同的书放入一个书包,至少放一本,最多放2本,共有种不同的放法.2.三女一男四人同行,从中任意选出两人,其性别不同的概率为()3.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色外,其余均相同,若从中随机摸出一个球,摸到黄球的概率为,则n=.10C8A.B.C.D.,4.在一个不透明的袋子里,装有三个分别写有数字6,-2,7的小球,它们的形状、大小、质地等完全相同.先从袋子里随机取出一个小球,记下数字后放回袋子里,摇匀后再随机取出一个小球,记下数字.请你用列表或画树状图的方法求下列事件的概率.(1)两次取出的小球上的数字相同;(2)两次取出的小球上的数字之和大于10.6-27,(1)两次取出的小球上的数字相同的可能性有3种,所以P(数字相同)=(2)两次取出的小球上的数字之和大于10的可能性有4种,所以P(数字之和大于10)=解:根据题意,画出树状图如下:第一个数字第二个数字66-27-26-2776-27,5.现有A、B、C三盘包子,已知A盘中有两个酸菜包和一个糖包,B盘中有一个酸菜包、一个糖包和一个韭菜包,C盘中有一个酸菜包、一个糖包和一个馒头.老师就爱吃酸菜包,如果老师从每个盘中各选一个包子(馒头除外),那请你帮老师算算选的包子全部是酸菜包的概率是多少?ABC,解:根据题意,画出树状图如下:由树状图得,所有可能出现的结果有18个,它们出现的可能性相等.选的包子全部是酸菜包有2个,所以选的包子全部是酸菜包的概率是A盘B盘C盘酸酸糖韭酸糖酸糖酸糖酸酸糖韭酸糖酸糖酸糖糖酸糖韭酸糖酸糖酸糖酸酸酸酸酸糖酸糖酸酸糖糖酸韭酸酸韭糖酸酸酸酸酸糖酸糖酸酸糖糖酸韭酸酸韭糖糖酸酸糖酸糖糖糖酸糖糖糖糖韭酸糖韭糖,6.甲、乙、丙三个盒子中分别装有大小、形状、质地相同的小球若干,甲盒中装有2个小球,分别写有字母A和B;乙盒中装有3个小球,分别写有字母C、D和E;丙盒中装有2个小球,分别写有字母H和I.现要从3个盒子中各随机取出1个小球.IHDECAB,(1)取出的3个小球中恰好有1个,2个,3个写有元音字母的概率各是多少?甲乙丙ACDEHIHIHIBCDEHIHIHIBCHACHACIADHADIAEHAEIBCIBDHBDIBEHBEI解:由树状图得,所有可能出现的结果有12个,且它们出现的可能性相等.,(1)满足只有一个元音字母的结果有5个,则P(一个元音)=满足三个全部为元音字母的结果有1个,则P(三个元音)=满足只有两个元音字母的结果有4个,则P(两个元音)==,(2)取出的3个小球上全是辅音字母的概率是多少?甲乙丙ACDEHIHIHIBCDEHIHIHIBCHACHACIADHADIAEHAEIBCIBDHBDIBEHBEI解:满足全是辅音字母的结果有2个,则P(三个辅音)==.,课堂小结树状图步骤用法是一种解决试验有多步(或涉及多个因素)的好方法.注意弄清试验涉及试验因素个数或试验步骤分几步;③利用概率公式进行计算.①关键要弄清楚每一步有几种结果;②在树状图下面对应写着所有可能的结果;②在摸球试验一定要弄清“放回”还是“不放回”.
版权提示
- 温馨提示:
- 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)