CC课件
首页
同步备课
小学
初中
高中
试卷
小升初
中考
高考
主题班会
学校用文
您的位置:
首页
>
初中
>
数学
>
人教版(2012)
>
八年级下册
>
第十八章 平行四边形
>
18.1 平行四边形
>
18.1.2 平行四边形的判定
>
人教版八下数学教学课件:18.1.2平行四边形的判定(第2课时)
人教版八下数学教学课件:18.1.2平行四边形的判定(第2课时)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/57
2
/57
3
/57
4
/57
剩余53页未读,
查看更多内容需下载
充值会员,即可
免费下载
文档下载
平行四边形的判定(第二课时) 边角对角线数量关系位置关系边角对角线复习回顾,引入新知判定性质数量关系位置关系 平行四边形的判定定理:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.平行四边形的定义:两组对边分别平行的四边形是平行四边形. 复习回顾,引入新知DACBOAB∥DCAD∥BC四边形ABCD是平行四边形边AB=DCAD=BC角∠DAB=∠BCD∠ADC=∠CBA对角线BO=DOAO=CO两组两组两组两组 获得猜想,规范证明猜想:一组对边平行且相等的四边形是平行四边形. 猜想:一组对边平行且相等的四边形是平行四边形.如果一个四边形一组对边平行且相等,那么这个四边形是平行四边形.题设结论已知:如图,在四边形ABCD中,AB∥CD,AB=CD.求证:四边形ABCD是平行四边形.DABC 分析两组对边分别平行一个四边形是平行四边形两组对边分别相等两组对角分别相等对角线互相平分一组对边平行且相等 DABC方法一:AB∥CD BC=DAAB∥CDDABC12□ABCD方法一:AB=CD△ABC≌△CDA∠1=∠2连接AC ∠3=∠4AB∥CD□ABCD方法二:△ABC≌△CDA∠1=∠2连接ACDABC1243BC∥ADAB=CD 连接AC△ABC≌△CDA∠3=∠4,∠B=∠DAB∥CDDABC12∠1=∠2□ABCD方法三:43∠BAD=∠DCBAB=CD 连接AC,BD△AOB≌△CODAO=CO,BO=DOAB∥CD∠1=∠2(∠AOB=∠COD)□ABCD方法四:ODABC21AB=CD 证明:连接AC.∵AB∥CD,∴ ∠1=∠2.又AB=CD,AC=CA,∴△ABC≌△CDA.∴BC=DA.∴四边形ABCD是平行四边形.DABC12方法一 判定定理:一组对边平行且相等的四边形是平行四边形.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.DABC 例如图,在□ABCD中,E,F分别是AB,CD的中点.求证:四边形EBFD是平行四边形.运用知识,巩固提升DABCEF 分析DABCEFAB=CD,AB∥CD□ABCDE是AB中点F是CD中点EB∥FDEB=AB,FD=CD□EBFDEB=FD 证明:∵四边形ABCD是平行四边形,∴AB=CD,EB∥FD.又EB=AB,FD=CD,∴EB=FD.∴四边形EBFD是平行四边形.DABCEF 平行四边形一组对边位置关系数量关系平行相等判定定理:一组对边平行且相等的四边形是平行四边形.四边形 四边形边角对角线两组对边分别平行两组对边分别相等一组对边平行且相等两组对角分别相等对角线互相平分平行四边形平行四边形的判定方法 练习如图,AD为△ABC的角平分线,DE∥AB,在AB上截取BF=AE,试猜想EF与BD的关系,并证明你的结论.ABEFCD ABEFCDAD为△ABC的角平分线分析DE∥AB∠BAD=∠DAC∠BAD=∠ADE∠DAC=∠ADEAE=DE(已知)(已知) ABEFCD分析BF=AEAE=DEBF=DE,DE∥AB(已知)BF∥DE□BDEFEF=BD,EF∥BD(已证) ABEFCD猜想:EF=BD,EF∥BD.证明:∵AD平分∠BAC,∴∠BAD=∠DAC.∵DE∥AB,∴∠BAD=∠ADE.∴∠DAC=∠ADE.∴AE=DE. ABEFCD∵BF=AE,∴BF=DE.又BF∥DE,∴四边形BDEF是平行四边形.∴EF=BD,EF∥BD. 四边形边角对角线两组对边分别平行两组对边分别相等一组对边平行且相等两组对角分别相等对角线互相平分平行四边形位置关系数量关系 练习如图,在□ABCD中,BD是它的一条对角线,过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.求证:四边形AFCE是平行四边形.AFDCBEAE∥CF思路一一组对边平行且相等对角线BDAE⊥BD,CF⊥BD思路二对角线互相平分点E,F在BD上 方法一:AFDCBE□AFCEAE∥CFAE=CF(已知)AE⊥BDCF⊥BD∠AEF=∠CFE=90°∠AED=∠CFB=90°□ABCD(已知)AD∥BC∠ADB=∠CBDAD=BC△AED≌△CFB 证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∴∠ADB=∠CBD.∵AE⊥BD,CF⊥BD,∴∠AEF=∠CFE=90°,∠AED=∠CFB=90°.AFDCBE ∴△AED≌△CFB.∴AE=CF.又∠AEF=∠CFE,∴AE∥CF.∴四边形AFCE是平行四边形.AFDCBE □ABCDAFDCBE(已知)方法二: □ABCDAO=CO(∠AOE=∠COF)EO=FO△AEO≌△CFOAFDCBEO□AFCE(已知)AE⊥BDCF⊥BD(已知)连接AC方法二:∠AEO=∠CFO 证明:连接AC交BD于点O.∵四边形ABCD是平行四边形,∴AO=CO.∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°.AFDCBEO ∵∠AOE=∠COF,∴△AEO≌△CFO.∴EO=FO.∴四边形AFCE是平行四边形.AFDCBEO 方法一:AFDCBE□AFCEAE∥CFAE=CF(已知)AE⊥BDCF⊥BD∠AEF=∠CFE=90°∠AED=∠CFB=90°□ABCD(已知)AD∥BC∠ADB=∠CBDAD=BC△AED≌△CFB 方法三:□AFCEAE∥CFAE=CF(已知)AE⊥BDCF⊥BD∠AEF=∠CFE=90°∠AED=∠CFB=90°□ABCD(已知)AFDCBEAB∥CD∠ABD=∠CDBAB=CD△AEB≌△CFD 练习如图,在梯形ABCD中,AB∥DC.(1)已知∠A=∠B,求证AD=BC;(2)已知AD=BC,求证∠A=∠B.ADCB 练习如图,在梯形ABCD中,AB∥DC.(1)已知∠A=∠B,求证AD=BC;ADCB思路一:两组对边分别平行的四边形是平行四边形.思路二:一组对边平行且相等的四边形是平行四边形. ADCBE过点D作DE∥CB,交AB于点E.ADCBE在AB上截取线段EB,使EB=DC,连接DE. 方法一:ADCB AD=ED∠A=∠B(已知)AB∥DC(已知)DE∥CBAD=BC□DEBCADCB1EED=BC∠1=∠B∠A=∠1方法一: 证明:过点D作DE∥CB,交AB于点E.∴∠1=∠B.∵∠A=∠B,∴∠A=∠1.∴AD=ED.ADCB1E ADCB1E∵DE∥CB,EB∥DC,∴四边形DEBC是平行四边形.∴ED=BC.∴AD=BC. ADCB方法二: ∠A=∠1ADCB1EED∥BC∠A=∠B(已知)∠B=∠1ED=BCAB∥DC(已知)□DEBCAD=BC方法二:EB=DCAD=ED 证明:在AB上截取线段EB,使EB=DC,连接DE.∵AB∥DC,EB=DC,∴四边形DEBC是平行四边形.∴ED∥BC,ED=BC.∴∠1=∠B.ADCB1E ∵∠A=∠B,∴∠A=∠1.∴AD=ED.∴AD=BC.ADCB1E ADCBE过点D作DE∥CB,交AB于点E.ADCBE在AB上截取线段EB,使EB=DC,连接DE.ADCBEADCBE过点C作CE∥DA,交AB于点E.在AB上截取线段AE,使AE=DC,连接CE. 练习如图,在梯形ABCD中,AB∥DC.(1)已知∠A=∠B,求证AD=BC;(2)已知AD=BC,求证∠A=∠B.ADCB ADCBAB∥DC(已知)分析 AD=BC(已知)ADCB1E∠A=∠BAB∥DC(已知)□DEBCED=BCED∥BC分析∠1=∠BAD=ED∠A=∠1 证明:过点D作ED∥BC交AB于点E.∴∠1=∠B.∵AB∥DC,ED∥BC,∴四边形DEBC是平行四边形.∴ED=BC.ADCB1E ADCB1E∵AD=BC,∴AD=ED.∴∠A=∠1.∴∠A=∠B. 常用的添加辅助线的方法ADCBEAFDCBEO连接对角线过一点作已知直线的平行线构造图形,解决问题作一条线段等于已知线段 反思回顾,总结提升判定性质定义边角对角线两组对边分别平行两组对边分别相等一组对边平行且相等两组对角分别相等对角线互相平分数量关系位置关系互逆平行四边形 课后作业1.如图,在□ABCD中,点E,F分别在BC,AD上,且AF=CE.求证:四边形AECF是平行四边形.ADCBEF 课后作业2.如图,四边形AEFD和EBCF都是平行四边形.求证:四边形ABCD是平行四边形.ADCBEF 同学们再见!
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
华东师大版七年级数学上学期期中检测题
浙教版七年级数学下册第3章整式的乘除3.5整式的化简教案2
浙教版七年级数学下册第3章整式的乘除3.6同底幂的除法2教案
浙教版七年级数学下册第3章整式的乘除3.6同底数幂的除法1教案
浙教版七年级数学下册第3章整式的乘除3.7整式的除法教案
浙教版七年级数学下册第4章因式分解4.1因式分解教案
浙教版七年级数学下册第5章分式5.5分式方程2教案
浙教版七年级数学下册第6章数据与统计图表6.2条形统计图和折线统计图教案
浙教版七年级数学下册第6章数据与统计图表6.5频数直方图教案
沪科版春七年级数学下册第7章一元一次不等式与不等式组7.1不等式及其基本性质7.1.1认识不等式教案
沪科版七年级数学下册第7章一元一次不等式与不等式组7.1不等式及其基本性质7.1.2不等式的基本性质教案
沪科版七年级数学下册第7章一元一次不等式与不等式组7.1不等式及其基本性质7.1.1认识不等式说课稿
文档下载
收藏
所属:
初中 | 数学
发布时间:2022-01-19 17:00:10
页数:57
价格:¥1.9
大小:7.03 MB
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
友情链接
CC课件