CC课件
首页

17.2第1课时勾股定理的逆定理教案

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

17.2 勾股定理的逆定理第1课时 勾股定理的逆定理2页共2页1.能利用勾股定理的逆定理判定一个三角形是否为直角三角形;(重点)2.灵活运用勾股定理及其逆定理解决问题;(难点)3.理解原命题、逆命题、逆定理的概念及关系.(重点)                  一、情境导入古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后用桩钉成一个三角形(如图),他们认为其中一个角便是直角.你知道这是什么道理吗?二、合作探究探究点一:勾股定理的逆定理【类型一】判断三角形的形状如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为(  )A.直角三角形 B.锐角三角形C.钝角三角形 D.以上答案都不对解析:∵正方形小方格边长为1,∴BC==5,AC==3,AB==.在△ABC中,∵BC2+AC2=50+18=68,AB2=68,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选A.方法总结:要判断一个角是不是直角,可构造出三角形,然后求出三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【类型二】利用勾股定理的逆定理证明垂直关系如图,已知在正方形ABCD中,AE=EB,AF=AD.求证:CE⊥EF.解析:根据题设提供的信息,可将需证明垂直关系的两条线段转化到同一直角三角形中,运用勾股定理的逆定理进行证明.证明:连接CF.设正方形的边长为4,∵四边形ABCD为正方形,∴AB=BC=CD=DA=4.∵点E为AB中点,AF=AD,∴AE=BE=2,AF=1,DF=3.由勾股定理得EF2=12+22=5,EC2=22+42=20,FC2=42+32=25.∵EF2+EC2=FC2,∴△CFE是直角三角形,且∠FEC=90°,即EF⊥CE.方法总结:利用勾股定理的逆定理可以判断一个三角形是否为直角三角形,所以此定理也是判定垂直关系的一个主要的方法.【类型三】勾股数判断下列几组数中,一定是勾股数的是(  )A.1,,    B.8,15,172页共2页 C.7,14,15D.,,1解析:选项A不是,因为和不是正整数;选项B是,因为82+152=172,且8、15、17是正整数;选项C不是,因为72+142≠152;选项D不是,因为与不是正整数.故选B.方法总结:勾股数必须满足:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是勾股数;②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.【类型四】运用勾股定理的逆定理解决面积问题如图,在四边形ABCD中,∠B=90°,AB=8,BC=6,CD=24,AD=26,求四边形ABCD的面积.解析:连接AC,根据已知条件可求出AC,再运用勾股定理可证△ACD为直角三角形,然后可分别求出两个直角三角形的面积,两者面积相加即为四边形ABCD的面积.解:连接AC.∵∠B=90°,∴△ABC为直角三角形,∴AC2=AB2+BC2=82+62=102,∴AC=10.在△ACD中,∵AC2+CD2=100+576=676,AD2=262=676,∴AC2+CD2=AD2,∴△ACD为直角三角形,且∠ACD=90°.∴S四边形ABCD=S△ABC+S△ACD=×6×8+×10×24=144.方法总结:将求四边形面积的问题可转化为求两个直角三角形面积和的问题,解题时要利用题目信息构造出直角三角形,如角度,三边长度等.探究点二:互逆命题与互逆定理写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题.(1)两直线平行,同旁内角互补;(2)在同一平面内,垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60°的三角形是等边三角形.解析:求一个命题的逆命题时,分别找出各命题的题设和结论将其互换即可得原命题的逆命题.解:(1)同旁内角互补,两直线平行,真命题;(2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内),真命题;(3)内错角相等,假命题;(4)等边三角形有一个角是60°,真命题.方法总结:判断一个命题是真命题需要进行逻辑推理,判断一个命题是假命题只需要举出反例即可.三、板书设计1.勾股定理的逆定理及勾股数如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.2.互逆命题与互逆定理在本课时教学过程中,应以师生共同探讨为主.激励学生回答问题,激发学生的求知欲.课堂上师生互动频繁,既保证课堂教学进度,又提高课堂学习效率.学生在探讨过程中也加深了对知识的理解和记忆.2页共2页

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2022-01-27 09:00:36 页数:2
价格:¥3 大小:1.07 MB

推荐特供

MORE