CC课件
首页

1.4 角平分线第1课时角平分线的性质课件

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/22

2/22

3/22

4/22

剩余18页未读,查看更多内容需下载

1.4角平分线第一章三角形的证明导入新课讲授新课当堂练习课堂小结第1课时角平分线 1.会叙述角平分线的性质及判定;(重点)2.能利用三角形全等,证明角平分线的性质定理,理解和掌握角平分线性质定理和它的逆定理,能应用这两个性质解决一些简单的实际问题;(难点)3.经历探索、猜想、证明的过程,进一步发展学生的推理证明意识和能力.学习目标 情境引入如图,要在S区建一个贸易市场,使它到铁路和公路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处?(比例尺为1︰20000)DCS解:作夹角的角平分线OC,截取OD=2.5cm,D即为所求.O导入新课 1.操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE⊥OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:2.观察测量结果,猜想线段PD与PE的大小关系,写出结:__________PDPE第一次第二次第三次COBAPD=PEpDE实验:OC是∠AOB的平分线,点P是射线OC上的任意一点猜想:角的平分线上的点到角的两边的距离相等.角平分线的性质一讲授新课 验证猜想已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:PD=PE.PAOBCDE证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO和△PEO中,∠PDO=∠PEO,∠AOC=∠BOC,OP=OP,∴△PDO≌△PEO(AAS).∴PD=PE.角的平分线上的点到角的两边的距离相等 性质定理:角的平分线上的点到角的两边的距离相等.应用所具备的条件:(1)角的平分线;(2)点在该平分线上;(3)垂直距离.定理的作用:证明线段相等.应用格式:∵OP是∠AOB的平分线,∴PD=PE(在角的平分线上的点到这个角的两边的距离相等).推理的理由有三个,必须写完全,不能少了任何一个.知识要点PD⊥OA,PE⊥OB,BADOPEC 判一判:(1)∵如下左图,AD平分∠BAC(已知),∴=,()在角的平分线上的点到这个角的两边的距离相等BDCD×BADC(2)∵如上右图,DC⊥AC,DB⊥AB(已知).∴=,()在角的平分线上的点到这个角的两边的距离相等BDCD×BADC 例1:已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC.垂足分别为E,F.求证:EB=FC.ABCDEF证明:∵AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF,∠DEB=∠DFC=90°.在Rt△BDE和Rt△CDF中,DE=DF,BD=CD,∴Rt△BDE≌Rt△CDF(HL).∴EB=FC. 例2:如图,AM是∠BAC的平分线,点P在AM上,PD⊥AB,PE⊥AC,垂足分别是D、E,PD=4cm,则PE=______cm.BACPMDE4温馨提示:存在两条垂线段———直接应用 ABCP变式:如图,在Rt△ABC中,AC=BC,∠C=90°,AP平分∠BAC交BC于点P,若PC=4,AB=14.(1)则点P到AB的距离为_______.D4温馨提示:存在一条垂线段———构造应用 ABCP变式:如图,在Rt△ABC中,AC=BC,∠C=900,AP平分∠BAC交BC于点P,若PC=4,AB=14.(2)求△APB的面积.D(3)求∆PDB的周长.·AB·PD=28.由垂直平分线的性质,可知,PD=PC=4,= 1.应用角平分线性质:存在角平分线涉及距离问题2.联系角平分线性质:面积周长条件知识与方法利用角平分线的性质所得到的等量关系进行转化求解 角平分线的判定二PAOBCDE角的内部到角的两边距离相等的点在角的平分线上.思考:交换角的平分线性质中的已知和结论,你能得到什么结论,这个新结论正确吗?角平分线的性质:角的平分线上的点到角的两边的距离相等.思考:这个结论正确吗?逆命题 已知:如图,PD⊥OA,PE⊥OB,垂足分别是D、E,PD=PE.求证:点P在∠AOB的角平分线上.证明:作射线OP,∴点P在∠AOB角的平分线上.在Rt△PDO和Rt△PEO中,(全等三角形的对应角相等).OP=OP(公共边),PD=PE(已知),BADOPE∵PD⊥OA,PE⊥OB.∴∠PDO=∠PEO=90°,∴Rt△PDO≌Rt△PEO(HL).∴∠AOP=∠BOP证明猜想 判定定理:角的内部到角的两边的距离相等的点在角的平分线上.PAOBCDE应用所具备的条件:(1)位置关系:点在角的内部;(2)数量关系:该点到角两边的距离相等.定理的作用:判断点是否在角平分线上.应用格式:∵PD⊥OA,PE⊥OB,PD=PE.∴点P在∠AOB的平分线上.知识总结 例3:如图,已知∠CBD和∠BCE的平分线相交于点F,求证:点F在∠DAE的平分线上.证明:过点F作FG⊥AE于G,FH⊥AD于H,FM⊥BC于M.∵点F在∠BCE的平分线上,FG⊥AE,FM⊥BC.∴FG=FM.又∵点F在∠CBD的平分线上,FH⊥AD,FM⊥BC,∴FM=FH,∴FG=FH.∴点F在∠DAE的平分线上.GHMABCFED┑┑┑ 例4如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计.(尺规作图,不写作法,保留作图痕迹)ONMAB ONMABP方法总结:到角两边距离相等的点在角的平分线上,到两点距离相等的点在两点连线的垂直平分线上.解:如图所示: 归纳总结图形已知条件结论PCPCOP平分∠AOBPD⊥OA于DPE⊥OB于EPD=PEOP平分∠AOBPD=PEPD⊥OA于DPE⊥OB于E角的平分线的判定角的平分线的性质 当堂练习2.△ABC中,∠C=90°,AD平分∠CAB,且BC=8,BD=5,则点D到AB的距离是.ABCD3E1.如图,DE⊥AB,DF⊥BG,垂足分别是E,F,DE=DF,∠EDB=60°,则∠EBF=度,BE=.60BFEBDFACG 3.已知用三角尺可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON,再分别过点M,N作OA,OB的垂线,交点为P,画射线OP,则OP平分∠AOB.为什么?AOBMNP解:在RT△MOP和RT△NOP中,OM=ON,OP=OP,∴RT△MOP≌RT△NOP(HL).∴∠MOP=∠NOP,即OP平分∠AOB. 课堂小结角平分线性质定理一个点:角平分线上的点;二距离:点到角两边的距离;两相等:两条垂线段相等辅助线添加过角平分线上一点向两边作垂线段判定定理在一个角的内部,到角两边距离相等的点在这个角的平分线上

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2022-02-12 17:00:06 页数:22
价格:¥3 大小:629.50 KB

推荐特供

MORE