几何图形初步 基础知识详解+基本典型例题解析(全)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
几何图形初步目录一、几何图形二、直线、射线、线段三、角四、《几何图形初步》全章复习与巩固一、几何图形基础知识讲解【学习目标】1.理解几何图形的概念,并能对具体图形进行识别或判断;2.掌握立体图形从不同方向看得到的平面图形及立体图形的平面展开图,在平面图形和立体图形相互转换的过程中,初步培养空间想象能力;3.理解点线面体之间的关系,掌握怎样由平面图形旋转得到几何体,能够借助平面图形剖析常见几何体的形成过程.【要点梳理】要点一、几何图形1.定义:把从实物中抽象出的各种图形统称为几何图形.要点诠释:几何图形是从实物中抽象得到的,只注重物体的形状、大小、位置,而不注重它的其它属性,如重量,颜色等.2.分类:几何图形包括立体图形和平面图形(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,如长方体,圆柱,圆锥,球等.(2)平面图形:有些几何图形(如线段、角、三角形、圆等)的各部分都在同一平面内,它们是平面图形.要点诠释:(1)常见的立体图形有两种分类方法:(2)常见的平面图形有圆和多边形,其中多边形是由线段所围成的封闭图形,生活中常见的多边形有三角形、四边形、五边形、六边形等.(3)立体图形和平面图形是两类不同的几何图形,它们既有区别又有联系.要点二、从不同方向看,从不同的方向看立体图形,往往会得到不同形状的平面图形.一般是从以下三个方向:(1)从正面看;(2)从左面看;(3)从上面看.从这三个方向看到的图形分别称为正视图(也称主视图)、左视图、俯视图.要点三、简单立体图形的展开图有些立体图形是由一些平面图形围成,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.要点诠释:(1)不是所有的立体图形都可以展成平面图形.例如,球便不能展成平面图形.(2)不同的立体图形可展成不同的平面图形;同一个立体图形,沿不同的棱剪开,也可得到不同的平面图.要点四、点、线、面、体长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称体;包围着体的是面,面有平的面和曲的面两种;面和面相交的地方形成线,线也分为直线和曲线两种;线和线相交的地方形成点.从上面的描述中我们可以看出点、线、面、体之间的关系.此外,从运动的观点看:点动成线,线动成面,面动成体.【典型例题1】类型一、几何图形1.如图所示,请写出下列立体图形的名称.【思路点拨】可以联系生活中常见的图形及基本空间想象能力,描述各种几何体的名称.【答案与解析】解:(1)五棱柱;(2)圆锥;(3)四棱柱或长方体;(4)圆柱;(5)四棱锥.【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).举一反三:【变式】如图所示,下列各标志图形主要由哪些简单的几何图形组成?【答案】(1)由圆组成;(2)长方形和正方形;(3)菱形(或四边形);(4)由圆和圆弧组成(或由一个圆和两个小半圆组成).类型二、从不同方向看2.如图所示的是一个三棱柱,试着把从正面、左面、上面观察所得到的图形画出来.,【思路点拨】注意观察的角度和方向.【答案与解析】解:从正面观察这个三棱柱,看到的图形是长方形;从左面观察它,看到的图形是长方形;从上面观察,看到的图形是三角形.因此,从三个方向看,得到的图形如图所示.【总结升华】若要画出从不同方向观察物体所得的图形,方向、角度一定要选准.因为从不同方向观察得到的图形往往不同.举一反三:【变式1】画出下列几何体的主视图、左视图与俯视图.【答案】主视图左视图俯视图【变式2】如图所示的工件的主视图是( ) A.B.C.D.【答案】B【解析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.3.已知一个几何体的三视图如图所示,则该几何体是(),A.棱柱B.圆柱C.圆锥D.球【答案】B【解析】此题可采用排除法.棱柱的三视图中不存在圆,故A不对;圆锥的主视图、左视图是三角形,故C不对;球的三视图都是圆,故D不对,因此应选B.【总结升华】平面展开图中,含有三角形,一般考虑棱锥或棱柱;如果只有两个三角形,必是三棱柱;如果含长方形,一般考虑棱柱;如果含有圆和长方形,一般考虑圆柱;如果含有扇形和圆,一般考虑圆锥.举一反三:【变式】右图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.圆柱D.三棱柱【答案】D类型三、展开图4.(2016•徐州)下列图形中,不可以作为一个正方体的展开图的是( )A.B.C.D.【思路点拨】利用不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况进行判断也可.【答案】C【解析】正方体沿着不同棱展开,把各种展开图分类,可以总结为如下11种情况:故选:C.【总结升华】,本题考查了正方体的展开图,熟记展开图的11种形式是解题的关键,利用不是正方体展开图的“一线不过四、田凹应弃之”(即不能出现同一行有多于4个正方形的情况,不能出现田字形、凹字形的情况)判断也可.举一反三:【变式】(2015•宜昌)下列图形中可以作为一个三棱柱的展开图的是( ) A.B.C.D.【答案】A.类型四、点、线、面、体5.分别指出下列几何体各有多少个面?面与面相交形成的线各有多少条?线与线相交形成的点各有多少个?如图所示.【答案与解析】解:(1)4个面,6条线,4个顶点;(2)6个面,12条线,8个顶点;(3)9个面,16条线,9个顶点.【总结升华】(1)数几何体中的点、线、面数时,要按一定顺序数,做到不重不漏.(2)一般地,n棱柱有(n+2)个面(其中2为两个底面),n棱锥有(n+1)个面(其中1为一个底面).6.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.【答案与解析】连线如下:,【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状.举一反三:【变式】将如图所示的Rt△ABC绕直角边AC旋转一周,所得几何体从正面看到的图形是().【答案】A【典型例题2】类型一、几何图形1.将图中的几何体进行分类,并说明理由.【思路点拨】首先要确定分类标准,可以按组成几何体的面是平面或曲面来划分,也可以按柱、锥、球来划分.【答案与解析】解:若按形状划分:(1)(2)(6)(7)是一类,组成它的各面全是平面;(3)(4)(5)是一类,组成它的面至少有一个是曲面.若按构成划分:(1)(2)(4)(7)是一类,是柱体;(5)(6)是一类,即锥体;(3)是球体.【总结升华】先根据立体图形的底面的个数,确定它是柱体、锥体还是球体,再根据其侧面是否为多边形来判断它是圆柱(锥)还是棱柱(锥).类型二、从不同方向看2.(2016春•潮南区月考)如图所示的是某个几何体的三视图.(1)说出这个立体图形的名称;(2)根据图中的有关数据,求这个几何体的表面积.,【思路点拨】(1)从三视图的主视图看这是一个矩形,而左视图是一个扁平的矩形,俯视图为一个三角形,故可知道这是一个直三棱柱;(2)根据直三棱柱的表面积公式计算即可.【答案与解析】解:(1)这个立体图形是直三棱柱;(2)表面积为:×3×4×2+15×3+15×4+15×5=192.【总结升华】本题主要考查由三视图确定几何体和求几何体的表面积等相关知识,考查学生的空间想象能力.举一反三:【变式】如图所示的几何体中,主视图与左视图不相同的几何体是().【答案】D提示:圆锥的主视图与左视图为相同的三角形;圆柱的主视图与左视图为相同的矩形;球的主视图与左视图为相同的圆,正三棱柱的主视图和左视图为不相同的两个矩形,故选D.3.由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是( )A.B.C.D.【答案】B【解析】俯视图中的每个数字是该位置小立方体的个数,分析其中的数字,得主视图有3列,从左到右分别是1,2,3个正方形.,【总结升华】本题考查了对几何体三种视图的空间想象能力,注意找到该几何体的主视图中每列小正方体最多的个数.举一反三:【变式1】用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体只有一种吗?它最少需要多少个小立方块?最多需要多少个小立方块?俯视图主视图【答案】几何体的形状不唯一,最少需要小方块的个数:,最多需要小方块的个数:.【变式2】下图是从正面、左面、上面看由若干个小积木搭成的几何体得到的图,那么这个几何体中小积木共有多少个?【答案】这个几何体中小积木共有6个.类型三、展开图4.右下图是一个正方体的表面展开图,则这个正方体是()【答案】D【解析】最直接的方法是做一个如图所示的正方体的表面展开图,然后再折叠后进行对照即可.也可用排除法,观察正方体的表面展开图,可发现分成4块的面中的4个小正方形中有3块的颜色是阴影,这就可排除A,再想象折叠的图形,可知正方体被分成4块的面的对面应是阴影,这就可排除B、C,所以选D.【总结升华】培养空间想想能力的方法有两种,一是通过动手操作来解决;二是通过想象进行确定.正方体沿着棱展开,把各种展开图分类,可以总结为如下11种情况.,举一反三:【变式】宜黄素有“华南虎之乡”的美誉.将“华南虎之乡美”六个字填写在一个正方体的六个面上,其平面展开图如图所示,那么在该正方体中,和“虎”相对的字是________.【答案】“美”.类型四、点、线、面、体5.如图,一个正五棱柱的底面边长为2cm,高为4cm.(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.【思路点拨】(1)根据图形可得侧面的个数,再加上上下底面即可;(2)顶点共有10个,棱有5×3条;(3)根据五棱柱顶点数、面数与棱的条数进行总结即可.【答案与解析】解:(1)侧面有5个,底面有2个,共有5+2=7个面;侧面积:2×5×4=40(cm2).(2)顶点共10个,棱共有15条;(3)n棱柱的顶点数2n;面数n+2;棱的条数3n.【总结升华】此题主要考查了认识立体图形,关键是掌握常见的立体图形的形状.6.将如右,图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是( )A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【答案】D【解析】首先考虑三角形和长方形旋转后所得几何体的形状,然后再根据两种几何体的三视图做出判断.【总结升华】“面动成体”,要充分发挥空间想象能力判断立体图形的形状.举一反三:【变式】(2015春•海安县校级期中)将如图所示放置的一个直角三角形ABC,(∠C=90°),绕斜边AB旋转一周,所得到的几何体的正视图是下面四个图中的( ) A.B.C.D.【答案】C二、直线、射线、线段基础知识讲解【学习目标】1.理解直线、射线、线段的概念,掌握它们的区别和联系;2.利用直线、线段的性质解决相关实际问题;3.利用线段的和差倍分解决相关计算问题.【要点梳理】要点一、直线1.概念:直线是最简单、最基本的几何图形之一,是一个不作定义的原始概念,直线常用“一根拉得紧的细线”、“一张纸的折痕”等实际事物进行形象描述.2.表示方法:(1)可以用直线上的表示两个点的大写英文字母表示,如图1所示,可表示为直线AB(或直线BA).(2)也可以用一个小写英文字母表示,如图2所示,可以表示为直线.3.基本性质:经过两点有一条直线,并且只有一条直线.简单说成:两点确定一条直线.要点诠释:直线的特征:(1)直线没有长短,向两方无限延伸.,(2)直线没有粗细.(3)两点确定一条直线.(4)两条直线相交有唯一一个交点.4.点与直线的位置关系:(1)点在直线上,如图3所示,点A在直线m上,也可以说:直线m经过点A.(2)点在直线外,如图4,点B在直线n外,也可以说:直线n不经过点B.要点二、线段1.概念:直线上两点和它们之间的部分叫做线段.2.表示方法:(1)线段可用表示它两个端点的两个大写英文字母来表示,如图所示,记作:线段AB或线段BA.(2)线段也可用一个小写英文字母来表示,如图5所示,记作:线段a.3.“作一条线段等于已知线段”的两种方法:法一:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.法二:用刻度尺作一条线段等于已知线段.例如:可以先量出线段a的长度,再画一条等于这个长度的线段.4.基本性质:两点的所有连线中,线段最短.简记为:两点之间,线段最短.如图6所示,在A,B两点所连的线中,线段AB的长度是最短的.图6要点诠释:(1)线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短.(2)连接两点间的线段的长度,叫做这两点的距离.(3)线段的比较:①度量法:用刻度尺量出两条线段的长度,再比较长短.②叠合法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.5.线段的中点:,把一条线段分成两条相等线段的点,叫做线段的中点.如图7所示,点C是线段AB的中点,则,或AB=2AC=2BC.图7要点诠释:若点C是线段AB的中点,则点C一定在线段AB上.要点三、射线1.概念:直线上一点和它一侧的部分叫射线,这个点叫射线的端点.如图8所示,直线l上点O和它一旁的部分是一条射线,点O是端点.图82.特征:是直的,有一个端点,不可以度量,不可以比较长短,无限长.3.表示方法:(1)可以用两个大写英文字母表示,其中一个是射线的端点,另一个是射线上除端点外的任意一点,端点写在前面,如图8所示,可记为射线OA.(2)也可以用一个小写英文字母表示,如图8所示,射线OA可记为射线l.要点诠释:(1)端点相同,而延伸方向不同,表示不同的射线.如图9中射线OA,射线OB是不同的射线.图9(2)端点相同且延伸方向也相同的射线,表示同一条射线.如图10中射线OA、射线OB、射线OC都表示同一条射线.图10要点四、直线、射线、线段的区别与联系1.直线、射线、线段之间的联系(1)射线和线段都是直线上的一部分,即整体与部分的关系.在直线上任取一点,则可将直线分成两条射线;在直线上取两点,则可将直线分为一条线段和四条射线.(2)将射线反向延伸就可得到直线;将线段一方延伸就得到射线;将线段向两方延伸就得到直线.2.三者的区别如下表,要点诠释:(1)联系与区别可表示如下:(2)在表示直线、射线与线段时,勿忘在字母的前面写上“直线”“射线”“线段”字样.【典型例题】类型一、相关概念1.下列说法中,正确的是()A.射线OA与射线AO是同一条射线B.线段AB与线段BA是同一条线段C.过一点只能画一条直线D.三条直线两两相交,必有三个交点【答案】B【解析】射线OA的端点是O,射线AO的端点是A,所以射线OA与射线AO不是同一条射线,故A错误;过一点能画无数条直线,所以C错误;三条直线两两相交,有三个交点或一个交点(三条直线相交于一点时),所以D错误;线段AB与线段BA是同一条线段,所以B正确.【总结升华】直线和线段用两个大写字母表示时,与字母的前后顺序无关,但射线必须是表示端点的字母写在前面,不能互换.举一反三:【变式1】以下说法中正确的是 ()A.延长线段AB到CB.延长射线AB,C.直线AB的端点之一是AD.延长射线OA到C【答案】A【变式2】如图所示,请分别指出图中的线段、射线和直线的条数,并把它们分别表示出来.【答案】解:如下图所示,在直线上点A左侧和点C右侧分别任取点X和Y.图中有6条射线:射线AX、射线AY、射线BX、射线BY、射线CX、射线CY.有3条线段:线段AB(或BA)、线段BC(或CB)、线段AC(或CA)有1条直线:直线AC(或AB,BC).类型二、有关作图2.如图所示,线段a,b,且a>b.用圆规和直尺画线段:(1)a+b;(2)a-b.【答案与解析】解:(1)画法如图(1),画直线AF,在直线AF上画线段AB=a,再在AB的延长线上画线段BC=b,线段AC就是a与b的和,记作AC=a+b.(2)画法如图(2),画直线AF,在直线AF上画线段AB=a,再在线段AB上画线段BD=b,线段AD就是a与b的差,记作AD=a-b.【总结升华】在画线段时,为使结果更准确,一般用直尺画直线,用圆规量取线段的长度.举一反三:【变式1】如图,C是线段AB外一点,按要求画图:(1)画射线CB;(2)反向延长线段AB;(3)连接AC,并延长AC至点D,使CD=AC.【答案】解:,【变式2】用直尺作图:P是直线a外一点,过点P有一条线段b与直线a不相交.【答案】解:类型三、有关条数及长度的计算3.如图,A、B、C、D为平面内任意三点都不在同一条直线上的四点,那么过其中两点,可画出条直线.【思路点拨】根据两点确定一条直线即可计算出直线的条数.【答案】6条直线【解析】由两点确定一条直线知,点A与B,C,D三点各确定一条直线,同理点B与C、D各确定一条直线,C与D确定一条直线,综上:共有直线:3+2+1=6(条).【总结升华】平面上有个点,其中任意三点不在一条直线上,则最多确定的直线条数为:.举一反三:【变式1】如图所示,已知线段AB上有三个定点C、D、E.(1)图中共有几条线段?(2)如果在线段CD上增加一点,则增加了几条线段?你能从中发现什么规律吗?【答案】解:(1)线段的条数:4+3+2+1=10(条);(2)如果在线段CD上增加一点P,则P与其它五个点各组成一条线段,,因此,增加了5条线段.(注解:若在线段AB上增加一点,则增加2条线段,此时线段总条数为1+2;若再增加一点,则又增加了3条线段,此时线段总条数为1+2+3;…;当线段AB上增加到n个点(即增加n-2个点)时,线段的总条数为1+2+……+(n-1)=n(n-1).)【变式2】)如图直线m上有4个点A、B、C、D,则图中共有________条射线.【答案】84.(2016春•启东市月考)已知点C在线段AB上,线段AC=7cm,BC=5cm,点M、N分别是AC、BC的中点,求MN的长度.【思路点拨】根据M、N分别为AC、BC的中点,根据AC、BC的长求出MC与CN的长,由MC+CN求出MN的长即可.【答案与解析】解:∵AC=7cm,BC=5cm,点M、N分别是AC、BC的中点,∴MC=AC=3.5cm,CN=BC=2.5cm,则MN=MC+CN=3.5+2.5=6(cm).【总结升华】此题考查了线段的和差,熟练掌握线段中点定义是解本题的关键.举一反三:【变式】在直线l上按指定方向依次取点A、B、C、D,且使AB:BC:CD=2:3:4,如图所示,若AB的中点M与CD的中点N的距离是15cm,求AB的长.【答案】解:依题意,设AB=2xcm,那么BC=3xcm,CD=4xcm.则有:MN=BM+BC+CN=x+3x+2x=15解得:所以AB=2x=cm.类型四、最短问题5.(2015•新疆)如图所示,某同学的家在A处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( ), A.A→C→D→BB.A→C→F→BC.A→C→E→F→BD.A→C→M→B【答案】B.【解析】根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.【总结升华】“两点之间线段最短”在实际生活中有广泛的应用,此类问题要与线段的性质联系起来,这里线段最短是指线段的长度最短,连接两点的线段的长度叫做两点间的距离,线段是图形,线段长度是数值.举一反三:【变式】(1)如图1所示,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.【答案】解:(1)河道的长度变小了.(2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.【典型例题】类型一、有关概念1.如图所示,指出图中的直线、射线和线段.【思路点拨】从图上看,A、D、F分别是线段CB、BC、BE的延长线上的点,也就是说,A、D、F三点的位置并不是完全确定的.此时,我们也就能分清楚图中的直线、射线和线段了.【答案与解析】解:直线有一条:直线AD;,射线有六条:射线BA、射线BD、射线CA、射线CD、射线BF、射线EF;线段有三条:线段BC、线段BE、线段CE.【总结升华】在表示线段和直线时,两个大写字母的顺序可以颠倒.然而,在叙述线段的延长线的时候,表示线段的两个大写字母的顺序就不能颠倒了,因为线段向一方延伸后就形成了射线(延长部分已不再是线段本身了),而表示射线的两个大写字母的顺序是不能颠倒的,只能用第一个字母表示射线的端点,第二个字母表示射线方向上的任一点.举一反三:【变式】两条不同的直线,要么有一个公共点,要么没有公共点,不能有两个公共点.这是为什么?画图说明.【答案】解:∵过两点有且只有一条直线.(或两点确定一条直线.)∴两条不同的直线,要么有一个公共点,如图(1);要么没有公共点,如图(2);不能有两个公共点.类型二、有关作图2.(2016春•高青县期中)已知平面上四点A、B、C、D,如图:(1)画直线AD;(2)画射线BC,与AD相交于O;(3)连结AC、BD相交于点F.【思路点拨】(1)画直线AD,连接AD并向两方无限延长;(2)画射线BC,以B为端点向BC方向延长交AD于点O;(3)连接各点,其交点即为点F.【答案与解析】解:如图所示:,【总结升华】本题主要考查直线、射线、线段的认识,掌握直线、射线、线段的特点是解题的关键.举一反三:【变式1】下列说法正确的有()①射线与其反向延长线成一条直线;②直线a、b相交于点m;③两直线相交于两个交点;④直线A与直线B相交于点MA.3个B.2个C.1个D.4个【答案】C【变式2】下列说法中,正确的个数有()①已知线段a,b且a-b=c,则c的值不是正的就是负的;②已知平面内的任意三点A,B,C则AB+BC≥AC;③延长AB到C,使BC=AB,则AC=2AB;④直线上的顺次三点D、E、F,则DE+EF=DF.A.1个B.2个C.3个D.4个【答案】C类型三、个(条)数或长度的计算3.根据题意,完成下列填空.如图所示,与是同一平面内的两条相交直线,它们有1个交点,如果在这个平面内,再画第3条直线,那么这3条直线最多有________个交点;如果在这个平面内再画第4条直线,那么这4条直线最多可有________个交点.由此我们可以猜想:在同一平面内,6条直线最多可有________个交点,n(n为大于1的整数)条直线最多可有________个交点(用含有n的代数式表示).【答案】3,6,15,.【解析】本题探索过程要分两步:首先要填好3条直线最多可有2+1=3个交点,再类推4条直线,5条直线,6条直线的情形所得到的和式,其次再研究这些和式的规律,得出一般性的结论.【总结升华】n(n为大于1的整数)条直线的交点最多可有:,个举一反三:【变式1】平面上有个点,最多可以确定条直线【答案】【变式2】一条直线有个点,最多可以确定条线段,条射线【答案】,【变式3】一个平面内有三条直线,会出现几个交点?【答案】0个,1个,2个,或3个.4.已知线段AB=14cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,求线段AM的长.【思路点拨】题目中只说明了A、B、C三点在同一直线上,无法判定点C在线段AB上,还是在线段AB外(也就是在线段AB的延长线上).所以要分两种情况求线段AM的长.【答案与解析】解:①当点C在线段AB上时,如图所示.因为M是线段AC的中点,所以.又因为AC=AB-BC,AB=14cm,BC=4cm,所以.②当点C在线段AB的延长线上时,如图所示.因为M是线段AC的中点,所以.又因为AC=AB+BC,AB=14cm,BC=4cm,所以9(cm).所以线段AM的长为5cm或9cm.【总结升华】在解答没有给出图形的问题时,一定要审题,要全面考虑所有可能的情况,即当我们面临的教学问题无法确定是哪种情形时,就要分类讨论.举一反三:【变式】(2015秋•泰安校级月考)已知A,B,C为直线l上的三点,线段AB=9cm,BC=1cm,那么A,C两点间的距离是 .【答案】8cm或10cm.解:分两种情况:①如图1,点C在线段AB上,则AC=AB﹣BC=9﹣1=8(cm);,②如图2,点C在线段AB的延长线上,AC=AB+BC=9+1=10(cm).故答案为:8cm或10cm.类型四、路程最短问题5.(2015春•嵊州市期末)某公司员工分别在A、B、C三个住宅区,A区有30人,B区有30人,C区有10人,三个区在同一条直线上,如图所示,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在( ) A.A区B.B区C.C区D.A、B两区之间【答案】B.【解析】解:①设在A区、B区之间时,设距离A区x米,则所有员工步行路程之和=30x+30(100﹣x)+10(100+200﹣x),=30x+3000﹣30x+3000﹣10x,=﹣10x+6000,∴当x最大为100时,即在B区时,路程之和最小,为5000米;②设在B区、C区之间时,设距离B区x米,则所有员工步行路程之和=30(100+x)+30x+10(200﹣x),=3000+30x+30x+2000﹣10x,=50x+5000,∴当x最大为0时,即在B区时,路程之和最小,为5000米;综上所述,停靠点的位置应设在B区.【总结升华】本题是线段的概念在现实中的应用,根据题意分别计算停靠点分别在各点时员工步行的路程和,选择最小的即可得解.举一反三:【变式】如图,从A到B最短的路线是( )A.A-G-E-BB.A-C-E-BC.A-D-G-E-BD.A-F-E-B【答案】D三、角基础知识讲解【学习目标】1.掌握角的概念及角的表示方法,并能进行角度的互换;2.借助三角尺画一些特殊角,掌握角大小的比较方法;3.会利用角平分线的意义进行有关表示或计算;4.掌握角的和、差、倍、分关系,并会进行有关计算;,5.掌握互为余角和互为补角的概念及性质,会用余角、补角及性质进行有关计算;6.了解方位角的概念,并会用方位角解决简单的实际问题.【要点梳理】要点一、角的概念1.角的定义:(1)定义一:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.如图1所示,角的顶点是点O,边是射线OA、OB.图2图1(2)定义二:一条射线绕着它的端点旋转而形成的图形,射线旋转时经过的平面部分是角的内部.如图2所示,射线OA绕它的端点O旋转到OB的位置时,形成的图形叫做角,起始位置OA是角的始边,终止位置OB是角的终边.要点诠释:(1)两条射线有公共端点,即角的顶点;角的边是射线;角的大小与角的两边的长短无关.(2)平角与周角:如图1所示射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,所形成的角叫做平角,如图2所示继续旋转,OB和OA重合时,所形成的角叫做周角.2.角的表示法:角的几何符号用“∠”表示,角的表示法通常有以下四种:要点诠释:,用数字或小写希腊字母表示角时,要在靠近角的顶点处加上弧线,且注上阿拉伯数字或小写希腊字母.3.角的画法(1)用三角板可以画出30°、45°、60°、90°等特殊角.(2)用量角器可以画出任意给定度数的角.(3)利用尺规作图可以画一个角等于已知角.要点二、角的比较与运算1.角度制及其换算角的度量单位是度、分、秒,把一个周角平均分成360等份,每一份就是1°的角,1°的为1分,记作“1′”,1′的为1秒,记作“1″”.这种以度、分、秒为单位的角的度量制,叫做角度制.1周角=360°,1平角=180°,1°=60′,1′=60″.要点诠释:在进行有关度分秒的计算时,要按级进行,即分别按度、分、秒计算,不够减,不够除的要借位,从高一位借的单位要化为低位的单位后再进行运算,在相乘或相加时,当低位得数大于等于60时要向高一位进位.2.角的比较:角的大小比较与线段的大小比较相类似,方法有两种.方法1:度量比较法.先用量角器量出角的度数,然后比较它们的大小.方法2:叠合比较法.把其中的一个角移到另一个角上作比较.如比较∠AOB和∠A′O′B′的大小:如下图,由图(1)可得∠AOB<∠A′O′B′;由图(2)可得∠AOB=∠A′O′B′;由图(3)可得∠AOB>∠A′O′B′.3.角的和、差关系如图所示,∠AOB是∠1与∠2的和,记作:∠AOB=∠1+∠2;∠1是∠AOB与∠2的差,记作:∠1=∠AOB-∠2.要点诠释:(1)用量角器量角和画角的一般步骤:①对中(角的顶点与量角器的中心对齐);②重合(一边与刻度尺上的零度线重合);③读数(读出另一边所在线的度数).(2)利用三角板除了可以做出30°、45°、60°、90°外,根据角的和、差关系,还可以画出15°,75°,105°,120°,135°,150°,165°的角.4.角平分线从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,OC是∠AOB的角平分线,∠AOB=2∠AOC=2∠BOC,,∠AOC=∠BOC=∠AOB.要点诠释:由角平分线的概念产生的合情推理其思维框架与线段中点的思维框架一样.要点三、余角和补角1.定义:一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.类似地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.2.性质:(1)同角(等角)的余角相等.(2)同角(等角)的补角相等.要点诠释:(1)互余互补指的是两个角的数量关系,互余、互补的两个角只与它们的和有关,而与它们的位置无关.(2)一般地,锐角α的余角可以表示为(90°-α),一个角α的补角可以表示为(180°-α).显然一个锐角的补角比它的余角大90°。要点四、方位角在航行和测绘等工作中,经常要用到表示方向的角.例如,图中射线OA的方向是北偏东60°;射线OB的方向是南偏西30°.这里的“北偏东60°”和“南偏西30°”表示方向的角,就叫做方位角.要点诠释:(1)正东,正西,正南,正北4个方向不需要用角度来表示;(2)方位角必须以正北和正南方向作为“基准”,“北偏东60°”一般不说成“东偏北30°”;(3)在同一问题中观察点可能不止一个,在不同的观测点都要画出表示方向的“十字线”,确定其观察点的正东、正西、正南、正北的方向;(4)图中的点O是观测点,所有方向线(射线)都必须以O为端点.要点五、钟表上有关夹角问题钟表中共有12个大格,把周角12等分、每个大格对应30°的角,分针1分钟转6°,时针每小时转30°,时针1分钟转0.5°,利用这些关系,可帮助我们解决钟表中角度的计算问题.【典型例题1】类型一、角的概念及表示,1.下列语句正确的是().A.两条直线相交,组成的图形叫做角.B.两条具有公共端点的线段组成的图形叫做角.C.两条具有公共端点的射线组成的图形叫做角.D.过同一点的两条射线组成的图形叫做角.【答案】C【解析】根据角的定义判断【总结升华】角不能仅仅看作是有公共端点的两条射线,角的两种描述中都隐含了组成角的一个重要元素,即两条射线间的相对位置关系,这是角与“有公共端点的两条射线”的重要区别.举一反三:【变式】判断下列说法是否正确(1)两条射线组成的图形叫做角()(2)平角是一条直线()(3)周角是一条射线()【答案】(1)×(2)×(3)×2.写出图中(1)能用一个字母表示的角;(2)以B为顶点的角;(3)图中共有几个角(小于180°).【答案与解析】解:(1)能用一个字母表示的角∠A、∠C.(2)以B为顶点的角∠ABE、∠ABC、∠CBE.(3)图中共有7个角.【总结升华】(1)顶点处只有一个角时,才可以用一个字母表示;(2)一般数角时不包括平角和大于平角的角.类型二、角度制的换算3.(1)把25.72°用度、分、秒表示;(2)把45°12′30″化成度(精确到百分位).【思路点拨】第(1)题中25.72°中含有两部分25°和0.72°,只要把0.72°化成分、秒即可.第(2)题中,45°12′30″含有三部分45°,12′和30″,其中45°已经是度,只要把12′和30″化成度即可.【答案与解析】解:(1)0.72°=0.72×60′=43.2′,0.2′=0.2×60″=12″,所以25.72°=25°43′12″.(2),,所以45°12′30″≈45.21°.【总结升华】无论由高级单位向低级化还是由低级单位向高级化,都必须逐级进行,“越级”化单位容易出错.举一反三:【变式】(1)把26.29°转化为度、分、秒表示的形式;(2)把33°24′36″转化成度表示的形式.【答案】解:(1)26.29°=26°+0.29°=26°+0.29×60′=26°+17.4′=26°+17′+0.4×60″=26°17′+24″=26°17′24″(2)33°24′36″=33°+24′+36×=33°+24′+0.6′=33°+24.6′=33°+24.6×=33.41°提示:在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后再进行计算。类型三、角的比较与运算4.不用量角器,比较图1和图2中角的大小.(用“>”连接)【思路点拨】图1中两角∠α、∠β均为锐角,因此,在不能测量的情形下,我们可以将图中的∠α向∠β平移,让∠α与∠β始边重合,观察终边的位置来比较角的大小.图2中的三个角按角的分类,∠1为锐角,∠2为直角,∠3为钝角,因此按照各自的范围就可以将它们的大小比较出来.【答案与解析】解:(1)如图所示,将∠α平移使∠α的始边与∠β的始边重合,发现∠α落在∠β内部,因此∠β>∠α.(2)由图可知∠1是锐角,∠1<90°,∠2是直角,即∠2=90°,∠3是钝角,即90°<∠3<180°,因此∠3>∠2>∠1.【总结升华】本例给出的两题是在不用量角器测量角的情况下比较角的大小,一种方法是叠合比较法,另外一种方法则是根据角的分类,由图形观察角的不同分类,按照常见的锐角<直角<钝角<平角<周角来比较大小.举一反三:【变式】已知∠AOB(如图所示),画一个角等于这个角.,【答案】作法:(1)以点O为圆心,适当长为半径画弧,分别交OA、OB于点C、D;(2)画一条射线O′A′,以点O′为圆心,OC长为半径画弧l,交O′A′于点C′;(3)以点C′为圆心,CD长为半径画弧,交弧l于点D′;(4)过点D′画射线O′B′,则∠A′O′B′=∠AOB.5.如图所示,已知OC平分∠BOD,且∠BOC=20°,OB是∠AOD的平分线,求∠AOD的度数.【答案与解析】解:因为OC平分∠BOD,且∠BOC=20°,所以∠BOD=2∠BOC=2×20°=40°.又OB是∠AOD的平分线,所以∠AOD=2∠BOD=2×40°=80°.【总结升华】应用角的平分线的定义时根据两点:若OB是∠AOC的平分线,则①∠AOB=∠BOC=∠AOC;②∠AOC=2∠AOB=2∠BOC,在解题时要学会灵活应用.举一反三:【变式】已知:如图,OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOC=80°,求:∠MON.【答案】解:∵OM平分∠AOB,ON平分∠COB,∴∠MOB=∠AOB,∠BON=∠BOC.(角平分线的定义)∴∠MON=∠MOB+∠BON=∠AOB+∠BOC=(∠AOB+∠BOC)=∠AOC=×80°=40°.,即∠MON=40°.类型四、余角和补角6.(2016春•曹县校级月考)一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.【思路点拨】这类题目要先设出这个角的度数.设这个角为x°,分别写出它的余角和补角,根据题意写出等量关系,解之即可得到这个角的度数.【答案与解析】解:设这个角为x°,则其余角为(90﹣x)°,补角为(180﹣x)°,依题意有180﹣x=2(90﹣x)+40,解得x=40.答:这个角的度数是40°.【总结升华】本题考查了余角和补角,是基础题,列出方程是解题的关键.举一反三:【变式】(2015•金华)已知∠α=35°,则∠α的补角的度数是( ) A.55°B.65°C.145°D.165°【答案】C.类型五、方位角7.A看B的方向是北偏东30°,那么B看A的方向是().A.南偏东60°B.南偏西60°C.南偏东30°D.南偏西30°【答案】D【解析】依题意画出示意图.由图可知,图中∠1即表示从A看B的北偏东30°,∠2是从B看A的方位角.由此可确定从B看A是南偏西30°.【总结升华】从本例的分析与结果来看,从A看B与从B看A正好是一对对立的观察过程,其方向是一种“相反”的对应关系.方位角的确定首先以什么点为基点(即人站在此处观察)要弄清楚,再由正南或正北到视线夹角测量出来.举一反三:【变式】小王从家出发向南偏东30°的方向走了1000米到达小军家,此时小王家在小军家的________方向.【答案】北偏西30°类型六、钟表上有关夹角问题,8.(2015•丹东模拟)如图是一个时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于 .【答案】135°.【解析】解:30°×(4+)=30=135°.【总结升华】根据钟面平均分成12份,可得每份30°,根据每份的度数乘以时针与分针相距的份数,可得答案.本题考查了钟面角,每份的度数乘以时针与分针相距的份数是解题关键.举一反三:【变式】2时48分时针与分针的夹角.【答案】解法1:如图(2),设2时48分时针与分针的夹角为∠α,所以∠α=360°-(48×6°-2×30°-48×0.5°)=360°-204°=156°解法2:如图(2)∠BOD=30°×4=120°,∠COD=2×6°=12°,∠AOB=48×0.5°=24°,所以∠AOC=∠BOD+∠COD+∠AOB=156°.即2时48分时针与分针的夹角为156°.【典型例题2】类型一、角的比较与运算1.利用一副三角板上的角,能画出多少个小于180°的角,试一一画出来.【思路点拨】首先发现一副三角板上有30°,45°,60°,90°这样4个不相等的角,利用这些角进行一次和差,可得小于180°的所有角.【答案与解析】,解:除了可以画30°,45°,60°,90°外,还可画15°,75°,105°,120°,135°,150°,165°的七个度数的角,画法如图所示.【总结升华】利用一副三角板共可以画出11个度数的角,分别是:30°,45°,60°,90°,15°,75°,105°,120°,135°,150°,165°.2.计算下列各题:(1)152°49′12″+20.18°;(2)82°-36°42′15″;(3)35°36′47″×9;(4)41°37′÷3.【答案与解析】解:(1)解法一:∵20.18°=20°10′48″即:152°49′12″+20.18°=173°.解法二:∵152°49′12″=152.82°,∴152.82°+20.18°=173°.即:152°49′12″+20.18°=173°.(2)将82°化为81°59′60″,则∴82°-36°42′15″=45°17′45″.423″=7′3″,324′+7′=5°31′,∴35°36′47″×9=320°31′3″.,∴41°37′÷3=13°52′20″.【总结升华】在角度的和、差运算中应先统一单位,都化成度或分、秒表示,然后进行计算;在进行乘法运算时,往往先把度、分、秒分别乘以倍数,将结果满60″进1′,满60′进1°;对于除法运算则是从度开始除,将余数化为分和以前的分数相加再除,将余数再化成秒和以前的秒数相加再除,若除不尽往往四舍五入.举一反三:【变式】计算:(1)23°45′36″+66°14′24″;(2)180°-98°24′30″;(3)15°50′42″×3;(4)88°14′48″÷4.【答案】(1)23°45′36″+66°14′24″=90°;(2)180°-98°24′30″=81°35′30″;(3)15°50′42″×3=47°32′6″;(4)88°14′48″÷4=22°3′42″.3.(2016春•龙口市期中)如图,∠AOB=90°,∠AOC=30°,且OM平分∠BOC,ON平分∠AOC,(1)求∠MON的度数;(2)若∠AOB=α其他条件不变,求∠MON的度数;(3)若∠AOC=β(β为锐角)其他条件不变,求∠MON的度数;(4)从上面结果中看出有什么规律?【思路点拨】(1)要求∠MON,即求∠COM﹣∠CON,再根据角平分线的概念分别进行计算即可求得;(2)和(3)均根据(1)的计算方法进行推导即可.(4)根据(2)和(3)中的结论进行总结.【答案与解析】解:(1)∵∠AOB=90°,∠AOC=30°,∴∠BOC=120°∵OM平分∠BOC,ON平分∠AOC∴∠COM=60°,∠CON=15°∴∠MON=∠COM﹣∠CON=45°.,(2)∵∠AOB=α,∠AOC=30°,∴∠BOC=α+30°∵OM平分∠BOC,ON平分∠AOC∴∠COM=+15°,∠CON=15°∴∠MON=∠COM﹣∠CON=.(3)∵∠AOB=90°,∠AOC=β,∴∠BOC=90°+β∵OM平分∠BOC,ON平分∠AOC∴∠COM=45°+,∠CON=.∴∠MON=∠COM﹣∠CON=45°.(4)从上面的结果中,发现:∠MON的大小只和∠AOB得大小有关,与∠A0C的大小无关.【总结升华】能够结合图形表示角之间的和差关系,根据角平分线的概念运用几何式子表示角之间的倍分关系.举一反三:【变式】如图,∠AOB的平分线OM,ON为∠MOA内的一条射线,OG为∠AOB外的一条射线。某同学经过认真分析,得到一个关系式是∠MON=(∠BON-∠AON),你认为这个同学得到的关系式正确吗?若正确,请把得到这个结论的过程写出来。【答案】解:正确,理由如下:∵∠AOB的平分线OM,∴∠AOM=∠MOB又∵∠MON=∠AOM-∠AON=∠MOB-∠AON=(∠BON-∠MON)-∠AON即有∠MON=∠BON-∠MON-∠AON∴2∠MON=∠BON-∠AON∴∠MON=(∠BON-∠AON)类型二、余角与补角4.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.,(1)当点C、E、F在直线AB的同侧(如图①所示)时.试说明∠BOE=2∠COF;(2)当点C与点E、F在直线AB的两旁(如图②所示)时(1)中的结论是否仍然成立?请给出你的结论并说明理由;(3)将如图②中的射线OF绕点O顺时针旋转m°(0<m<180),得到射线OD,设∠AOC=n°,若∠BOD=,则∠DOE的度数是多少?(用含n的式子表示)【思路点拨】由于本题中涉及角的数量关系,故可以选择代数的方法来说明理由.【答案与解析】解:(1)如图①,设∠COF=α,则∠EOF=90°-α因为OF是∠AOE的平分线所以∠AOF=90°-α所以∠AOC=(90°-α)-α=90°-2α∠BOE=180°-∠COE-∠AOC=180°-90°-(90°-2α)=2α即∠BOE=2∠COF(2)成立.如图2设∠AOC=β,则,所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β所以∠BOE=2∠COF(3)因为∠DOE=180°-∠AOE-∠BOD.故的度数是.【总结升华】根据角平分线,互余及互补的定义,进行有关角的计算.有一定的综合性和代表性,主要培养分析问题和解决问题的能力.举一反三:,【变式1】如图,已知O是直线AC上一点,OD平分ÐAOB,OE在ÐBOC内,且ÐBOE=ÐEOC,ÐDOE=70°,求ÐEOC的度数.【答案】解:设∠EOC=°,则ÐBOE=ÐEOC=°,根据题意可得:.解得:.∴ÐEOC=2ÐBOE=80°.【变式2】(2015•百色)一个角的余角是这个角的补角的,则这个角的度数是( ) A.30°B.45°C.60°D.70°【答案】B.解:设这个角的度数为x,则它的余角为90°﹣x,补角为180°﹣x,依题意得:90°﹣x=(180°﹣x),解得x=45°.类型三、方位角5.(2015•浦东新区三模)已知小岛A位于基地O的东南方向,货船B位于基地O的北偏东50°方向,那么∠AOB的度数等于 .【答案】85°.【解析】解:如图:∵∠2=50°,∴∠3=40°,∵∠1=45°,∴∠AOB=∠1+∠3=45°+40°=85°,故答案为:85°.,【总结升华】本题主要考查了方位角的概念,根据方位角的概念,画图正确表示出A,B的方位,注意东南方向是45度是解答此题的关键.类型四、钟表上有关夹角问题6.在7时到7时10分之间的什么时刻,时针与分针成一条直线?【答案与解析】解:设7时x分钟,时针与分针成一条直线,由题意得:,.答:7时分钟时针与分针成一条直线.【总结升华】时钟上的分针与时针绕着中心顺时针均匀转动,在不同时刻,两针之间形成一定的角度.如果把单位时间分针和时针转过的度数当作它们的速度则:①分针的速度为=6°/分;②时针的速度为=0.5°/分.故分针速度是时针速度的12倍.举一反三:【变式】某人下午6点多外出购物,表上的时针和分针的夹角恰为110°,下午近7点回家时,发现表上的时针和分针的夹角又是110°,试算出此人外出用了多长时间?【答案】解法一:设此人外出用了x分钟,则分针转了6x度,时针转了0.5x度.根据题意得:6x-0.5x=110×2,解之得x=40.答:此人外出购物用了40分钟的时间.解法二:设时针从某人外出到回家走了x°,则分针走了(110+110+x)°,则: 110+x+110=12x, 解得x=20. 又∵时针每分钟转0.5°, ∴此人外出用的时间为:20÷0.5=40(分钟).答:此人外出购物用了40分钟的时间.,四、《几何图形初步》全章复习与巩固【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观;2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法;3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形.【知识网络】【要点梳理】要点一、多姿多彩的图形1.几何图形的分类立体图形:棱柱、棱锥、圆柱、圆锥、球等.平面图形:三角形、四边形、圆等.几何图形要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果.2.立体图形与平面图形的相互转化(1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来.,要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践.(2)从不同方向看:主(正)视图---------从正面看几何体的三视图左视图-----从左(右)边看俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.②能根据三视图描述基本几何体或实物原型.(3)几何体的构成元素及关系几何体是由点、线、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1.直线,射线与线段的区别与联系2.基本性质(1)直线的性质:两点确定一条直线.(2)线段的性质:两点之间,线段最短.要点诠释:①本知识点可用来解释很多生活中的现象.如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线.②连接两点间的线段的长度,叫做两点间的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段.(2)用尺规作图法:用圆规在射线AC上截取AB=a,如下图:,4.线段的比较与运算(1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC,或AC=a+b;AD=AB-BD。(3)线段的中点:把一条线段分成两条相等线段的点,叫做线段的中点.如下图,有:要点诠释:①线段中点的等价表述:如上图,点M在线段上,且有,则点M为线段AB的中点.②除线段的中点(即二等分点)外,类似的还有线段的三等分点、四等分点等.如下图,点M,N,P均为线段AB的四等分点.要点三、角1.角的度量(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边;此外,角也可以看作由一条射线绕着它的端点旋转而形成的图形.(2)角的表示方法:角通常有三种表示方法:一是用三个大写英文字母表示,二是用角的顶点的一个大写英文字母表示,三是用一个小写希腊字母或一个数字表示.例如下图:,要点诠释:①角的两种定义是从不同角度对角进行的定义;②当一个角的顶点有多个角的时候,不能用顶点的一个大写字母来表示.(3)角度制及角度的换算1周角=360°,1平角=180°,1°=60′,1′=60″,以度、分、秒为单位的角的度量制,叫做角度制.要点诠释:①度、分、秒的换算是60进制,与时间中的小时分钟秒的换算相同.②度分秒之间的转化方法:由度化为度分秒的形式(即从高级单位向低级单位转化)时用乘法逐级进行;由度分秒的形式化成度(即低级单位向高级单位转化)时用除法逐级进行.③同种形式相加减:度加(减)度,分加(减)分,秒加(减)秒;超60进一,减一成60.(4)角的分类∠β锐角直角钝角平角周角范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°(5)画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法.2.角的比较与运算(1)角的比较方法:①度量法;②叠合法.(2)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线,例如:如下图,因为OC是∠AOB的平分线,所以∠1=∠2=∠AOB,或∠AOB=2∠1=2∠2.类似地,还有角的三等分线等.3.角的互余互补关系余角补角(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.,(3)结论:同角(或等角)的余角相等;同角(或等角)的补角相等.要点诠释:①余角(或补角)是两个角的关系,是成对出现的,单独一个角不能称其为余角(或补角).②一个角的余角(或补角)可以不止一个,但是它们的度数是相同的.③只考虑数量关系,与位置无关.④“等角是相等的几个角”,而“同角是同一个角”.4.方位角以正北、正南方向为基准,描述物体运动的方向,这种表示方向的角叫做方位角.要点诠释:(1)方位角还可以看成是将正北或正南的射线旋转一定角度而形成的.所以在应用中一要确定其始边是正北还是正南.二要确定其旋转方向是向东还是向西,三要确定旋转角度的大小.(2)北偏东45°通常叫做东北方向,北偏西45°通常叫做西北方向,南偏东45°通常叫做东南方向,南偏西45°通常叫做西南方向.(3)方位角在航行、测绘等实际生活中的应用十分广泛.【典型例题】类型一、概念或性质的理解1.下列说法正确的是()A.射线AB与射线BA表示同一条射线.B.连结两点的线段叫做两点之间的距离.C.平角是一条直线.D.若∠1+∠2=90°,∠1+∠3=90°,则∠2=∠3.【答案】D【解析】选项A中端点和延伸方向不同,所以是两条射线;选项B中两点之间的距离是指线段的长度,是一个数值,而不是图形;C中角和直线是两种不同的概念,不能混淆.【总结升华】理解概念,掌握概念与概念的本质区别,并进行“比较”性分析和记忆.举一反三:【变式】下列结论中,不正确的是().A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等D.等角的补角相等【答案】B类型二、立体图形与平面图形的相互转化2.(2015•泰州)一个几何体的表面展开图如图所示,则这个几何体是( ),A.四棱锥B.四棱柱C.三棱锥D.三棱柱【答案】A.【总结升华】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.举一反三:【变式】下面形状的四张纸板,按图所示的线经过折叠可以围成一个直三棱柱的是().【答案】C3.如图所示几何体的主视图是()【答案】A【解析】从正面看球位于桌面右方,故选A.【总结升华】从正面看所得到的图形是主视图,先得到球体的主视图,再得到长方体的主视图,再根据球体在长方体的右边可得出答案.类型三、互余互补的有关计算4.(2016春•曹县校级月考)一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.【思路点拨】这类题目要先设出这个角的度数.设这个角为x°,分别写出它的余角和补角,根据题意写出等量关系,解之即可得到这个角的度数.【答案与解析】解:设这个角为x°,则其余角为(90﹣x)°,补角为(180﹣x)°,依题意有180﹣x=2(90﹣x)+40,解得x=40.答:这个角的度数是40°.【总结升华】本题考查了余角和补角,是基础题,列出方程是解题的关键.举一反三:【变式】(2015•东莞模拟)一个角的余角比这个角的补角的一半小40°,则这个角为 度.【答案】80.解:设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),,由题意得,(180°﹣x)﹣(90°﹣x)=40°,解得x=80°.类型四、方位角5.如图,射线OA的方向是:________;射线OB的方向是:_________;射线OC的方向是:________.【思路点拨】OA表示的方向是北偏东,再加上其偏转的角度即可,同理OB、OC也是如此.【答案】北偏东15°;北偏西40°;南偏东45°.【解析】根据方位角的定义解答.【总结升华】熟知方位角的定义结合图形便可解答.类型五、钟表上的角6.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了________度.【答案】90【解析】根据钟表的特征;整个钟面是360°,分针每5分钟旋转30°,所以经过15分钟旋转了90°.【总结升华】在钟表问题中,常利用时针与分针转动的度数关系:时钟上的分针匀速旋转一分钟时的度数为6°,时针一分钟转过的度数为0.5°;两个相邻数字间的夹角为30°,每个小格夹角为6°,并且利用起点时间时针和分针的位置关系建立角的图形.类型六、利用数学思想方法解决有关线段或角的计算1.方程的思想方法7.如图所示,在射线OF上,顺次取A、B、C、D四点,使AB:BC:CD=2:3:4,又M、N分别是AB、CD的中点,已知AD=90cm,求MN的长.【思路点拨】有关比例问题,可设每一份为x,列方程求解,再利用中点定义,找出线段的和、差.【答案与解析】解:设线段AB,BC,CD的长分别是2xcm,3xcm,4xcm,∵AB+BC+CD=AD=90cm,∴2x+3x+4x=90,x=10,∴AB=20cm,BC=30cm,CD=40cm,∴MN=MB+BC+CN=AB+BC+CD=10+30+20=60(cm).,【总结升华】当已知某线段被分成的几条线段的长度比时,可根据比设未知数x,用x的式子表示相关的线段的长度,列方程求出x的值,进而求出线段的长.举一反三:【变式】如图所示,已知∠AOC=∠BOD=100°,且∠AOB:∠AOD=2:7,求∠BOC和∠COD的度数.【答案】解:设∠AOB的度数为2x,则∠AOD的度数为7x.由∠AOD=∠AOB+∠BOD及∠BOD=100°,可得7x=2x+100°.解得x=20°,所以∠AOB=2x=40°.所以∠BOC=∠AOC-∠AOB=100°-40°=60°,∠COD=∠BOD-∠BOC=100°-60°=40°.2.分类的思想方法8.以∠AOB的顶点O为端点的射线OC,使∠AOC:∠BOC=5:4.(1)若∠AOB=18°,求∠AOC与∠BOC的度数;(2)若∠AOB=m,求∠AOC与∠BOC的度数.【答案与解析】解:(1)分两种情况:①OC在∠AOB的外部,可设∠AOC=5x,则∠BOC=4x得∠AOB=x,即x=18°所以∠AOC=90°,∠BOC=72°②OC在∠AOB的内部,可设∠AOC=5x,则∠BOC=4x∠AOB=∠AOC+∠BOC=9x所以9x=18°,则x=2°所以∠AOC=10°,∠BOC=8°(2)仿照(1),可得:若∠AOB=m,则∠AOC=,∠BOC=,或∠AOC=5m,∠BOC=4m.【总结升华】本题中的已知条件没有明确地说明OC在∠AOB的内部或外部,所以两个问题都必须分类讨论.举一反三:【变式1】已知线段AB=8cm,在直线AB上画线段BC=3cm,求线段AC的长.【答案】解:分两种情况:,(1)如图(1),AC=AB-BC=8-3=5(cm);(2)如图(2),AC=AB+BC=8+3=11(cm).所以线段AC的长为5cm或11cm.【变式2】下列判断正确的个数有()①已知A、B、C三点,过其中两点画直线一共可画三条②过已知任意三点的直线有1条③三条直线两两相交,有三个交点A.0个B.1个C.2个D.3个【答案】A3.类比的思想方法9.(1)如图,线段AD上有两点B、C,图中共有______条线段.(2)如图,在∠AOD的内部有两条射线OB、OC,则图中共有个角.【答案】(1)6;(2)6.【解析】(1)以A为端点的线段有3条,同样以B,C,D为一个端点的线段也各有3条,又因为所有线段均重复了一次,所以共有线段条数:(条).(2)以射线OA为一边的角有3个,同样以OB,OC,OD为一边的角也各有3个,又因为所有角均重复一次,所以共有角的个数:(个).【总结升华】用同样的方法解决了不同的问题,用已知的知识类比地学习未知的内容.
版权提示
- 温馨提示:
- 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)