第十八章平行四边形18.1.2第1课时平行四边形的判定(1)课件(人教版八下)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1/33
2/33
3/33
4/33
剩余29页未读,查看更多内容需下载
18.1.2平行四边形判定第十八章平行四边形导入新课讲授新课当堂练习课堂小结第1课时平行四边形的判定(1)
学习目标1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;(重点)2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.(难点)
两组对边分别平行的四边形叫平行四边形.ABCD四边形ABCD如果AB∥CDAD∥BCBDABCDAC问题1平行四边形的定义是什么?有什么作用?可以用平行四边形的定义来判定平行四边形,如:导入新课复习引入
问题2除了两组对边分别平行,平行四边形还有哪些性质?平行四边形的对边相等.平行四边形的对角相等.平行四边形的对角线互相平分.边:角:对角线:思考我们得到的这些逆命题是否都成立?这节课我们一起探讨一下吧.问题3平行四边形上面的三条性质的逆命题各是什么?两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.两组对边分别相等的四边形是平行四边形;
猜想观看视频,将两长两短的四根细木条用小钉固定在一起,任意拉动,所得的四边形是平行四边形吗?讲授新课两组对边分别相等的四边形是平行四边形一
你能根据平行四边形的定义证明它们吗?已知:四边形ABCD中,AB=DC,AD=BC.求证:四边形ABCD是平行四边形.ABCD连接AC,在△ABC和△CDA中,AB=CD(已知),BC=DA(已知),AC=CA(公共边),∴△ABC≌△CDA(SSS)∴∠1=∠4,∠2=∠3,∴AB∥CD,AD∥BC,∴四边形ABCD是平行四边形.证明:1423证一证
平行四边形的判定定理:两组对边分别相等的四边形是平行四边形.归纳总结几何语言描述:在四边形ABCD中,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.BDAC
例1如图,在Rt△MON中,∠MON=90°.求证:四边形PONM是平行四边形.证明:Rt△MON中,由勾股定理得(x-5)2+42=(x-3)2,解得x=8.∴PM=11-x=3,ON=x-5=3,MN=x-3=5.∴PM=ON,OP=MN,∴四边形PONM是平行四边形.典例精析
例2如图,在△ABC中,分别以AB、AC、BC为边在BC的同侧作等边△ABD、等边△ACE、等边△BCF.试说明四边形DAEF是平行四边形.解:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF(SAS),∴AC=DF=AE.同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAEF是平行四边形.
如图,AD⊥AC,BC⊥AC,且AB=CD,求证:四边形ABCD是平行四边形.证明:在Rt△ABC和Rt△ACD中,∵AC=CA,AB=CD,∴Rt△ABC≌Rt△CDA(HL),∴BC=DA.又∵AB=CD,∴四边形ABCD是平行四边形.练一练
两组对角分别相等的四边形是平行四边形二观看下面视频,对于两组对角分别相等的四边形的形状你的猜想是什么?平行四边形
已知:四边形ABCD中,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形.ABCD又∵∠A=∠C,∠B=∠D,∵∠A+∠C+∠B+∠D=360°,∴2∠A+2∠B=360°,即∠A+∠B=180°,∴AD∥BC.∴四边形ABCD是平行四边形.同理得AB∥CD,证明:证一证
平行四边形的判定定理:两组对角分别相等的四边形是平行四边形.归纳总结几何语言描述:在四边形ABCD中,∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形.BDAC
例3如图,四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.(1)解:∵∠D+∠2+∠1=180°,∴∠D=180°-∠2-∠1=55°;(2)证明:∵AB∥DC,∴∠2=∠CAB,∴∠DAB=∠1+∠2=125°.∵∠DCB+∠DAB+∠D+∠B=360°,∴∠DCB=∠DAB=125°.又∵∠D=∠B=55°,∴四边形ABCD是平行四边形.
1.判断下列四边形是否为平行四边形:ADCB110°70°110°ABCD120°60°是不是练一练2.能判定四边形ABCD是平行四边形的条件:∠A:∠B:∠C:∠D的值为( )A.1:2:3:4B.1:4:2:3C.1:2:2:1D.3:2:3:2D
如图,将两根细木条AC、BD的中点重叠,用小钉固定在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD.转动两根木条,四边形ABCD一直是一个平行四边形吗?BDOAC对角线互相平分的四边形是平行四边形三猜想:四边形ABCD一直是一个平行四边形.你能根据平行四边形的定义证明它们吗?
ABCDO已知:四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.证明:在△AOB和△COD中,OA=OC(已知),OB=OD(已知),∠AOB=∠COD(对顶角相等),∴△AOB≌△COD(SAS),∴∠BAO=∠OCD,∠ABO=∠CDO,∴AB∥CD,AD∥BC∴四边形ABCD是平行四边形.证一证
平行四边形的判定定理:对角线互相平分的四边形是平行四边形.归纳总结几何语言描述:在四边形ABCD中,∵AO=CO,DO=BO,∴四边形ABCD是平行四边形.BODAC
例4如图,□ABCD的对角线AC,BD相交于点O,E,F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.BODACEF证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO.∵AE=CF,∴AO-AE=CO-CF,即EO=OF.又∵BO=DO,∴四边形BFDE是平行四边形.典例精析
【变式题】如图,AC是平行四边形ABCD的一条对角线,BM⊥AC于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.解:四边形BMDN是平行四边形.理由如下:连接BD交AC于O.∵BM⊥AC于M,DN⊥AC于N,∴∠AND=∠CMB=90°.∵四边形ABCD是平行四边形,∴OB=OD,AO=CO,AD=BC,AD∥BC,∴∠DAN=∠BCM,∴△ADN≌△CBM,∴AN=CM,∴OA-AN=OC-CM,即ON=OM,∴四边形BMDN是平行四边形.O
拓展探究昨天李明同学在生物实验室做实验时,不小心碰碎了实验室的一块平行四边形的实验用的玻璃片,只剩下如图所示部分,他想回家去割一块赔给学校,带上玻璃剩下部分去玻璃店不安全,于是他想把原来的平行四边形重新在纸上画出来?然后带上图纸去就行了,可原来的平行四边形怎么给它画出来呢(A,B,C为三顶点,即找出第四个顶点D)?ABC
DABC方法依据:两组对边分别平行的四边形是平行四边形.方法一:
DABC方法依据:两组对边分别相等的四边形是平行四边形.方法二:
DOABC方法依据:对角线互相平分的四边形是平行四边形.方法三:
1.根据下列条件,不能判定四边形为平行四边形的是()A.两组对边分别相等B.两条对角线互相平分C.两条对角线相等D.两组对边分别平行2.如图,在四边形ABCD中,AC与BD交于点O.如果AC=8cm,BD=10cm,那么当AO=_____cm,BO=_____cm时,四边形ABCD是平行四边形.BODACC45练一练
当堂练习1.判断对错:(1)有一组对边平行的四边形是平行四边形.()(2)有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形.()(3)对角线互相平分的四边形是平行四边形.()(4)一条对角线平分另一条对角线的四边形是平行四边形.()(5)有一组对角相等且一组对边平行的四边形是平行四边形.()√×××√
2.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形( )A.OA=OC,OB=ODB.AB=CD,AO=COC.AB=CD,AD=BCD.∠BAD=∠BCD,AB∥CDBODACB
3.如图,在四边形ABCD中,(1)如果AB∥CD,AD∥BC,那么四边形ABCD是___________.(2)如果∠A:∠B:∠C:∠D=a:b:a:b(a,b为正数),那么四边形ABCD是__________.(3)如果AD=6cm,AB=4cm,那么当BC=_______cm,CD=_____cm时,四边形ABCD为平行四边形.BDAC平行四边形平行四边形64
4.如图,五边形ABCDE是正五边形,连接BD、CE,交于点P.求证:四边形ABPE是平行四边形.证明:∵五边形ABCDE是正五边形,∴正五边形的每个内角的度数是AB=BC=CD=DE=AE,∴∠DEC=∠DCE=×(180°-108°)=36°,同理∠CBD=∠CDB=36°,∴∠ABP=∠AEP=108°-36°=72°,∴∠BPE=360°-108°-72°-72°=108°=∠A,∴四边形ABPE是平行四边形.ABCDEP
5.如图,已知E,F,G,H分别是▱ABCD的边AB,BC,CD,DA上的点,且AE=CG,BF=DH.求证:四边形EFGH是平行四边形.证明:在平行四边形ABCD中,∠A=∠C,AD=BC,又∵BF=DH,∴AH=CF.又∵AE=CG,∴△AEH≌△CGF(SAS),∴EH=GF.同理得△BEF≌△DGH(SAS),∴GH=EF,∴四边形EFGH是平行四边形.
6.如图,AB、CD相交于点O,AC∥DB,AO=BO,E、F分别是OC、OD的中点.求证:(1)△AOC≌△BOD;(2)四边形AFBE是平行四边形.证明:(1)∵AC∥BD,∴∠C=∠D.又∵∠COA=∠DOB,AO=BO,∴△AOC≌△BOD(AAS);(2)∵△AOC≌△BOD,∴CO=DO.∵E、F分别是OC、OD的中点,∴EO=FO.又∵AO=BO,∴四边形AFBE是平行四边形.
7.学校买了四棵树,准备栽在花园里,已经栽了三棵(如图),现在学校希望这四棵树能组成一个平行四边形,你觉得第四棵树应该栽在哪里?A1A3A2ABC
课堂小结平行四边形的判定(1)定义法:两组对边分别平行的四边形叫平行四边形.两组对边分别相等的四边形是平行四边形.两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形.
版权提示
- 温馨提示:
- 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)