CC课件
首页

3.2简单图形的坐标表示课件(湘教版八下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/25

2/25

3/25

4/25

剩余21页未读,查看更多内容需下载

3.2简单图形的坐标表示第3章图形与坐标 1.能建立适当的直角坐标系,描述图形的位置;(重点)2.通过用直角坐标系表示图形的位置,使学生体会平面直角坐标系在实际问题中的应用.(难点)学习目标 导入新课情境引入问题:如果某小区里有一块如图所示的空地,打算进行绿化,小明想请他的同学小慧提一些建议,小明要在电话中告诉小慧同学如图所示的图形,为了描述清楚,他使用了直角坐标系的知识.你知道小明是怎样叙述的吗? 建立坐标系求图形中点的坐标一问题:正方形ABCD的边长为4,请建立一个平面直角坐标系,并写出正方形的四个顶点A,B,C,D在这个平面直角坐标系中的坐标.ABCD讲授新课 44yx(A)BCD解:如图,以顶点A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系.此时,正方形四个顶点A,B,C,D的坐标分别为:A(0,0),B(4,0),C(4,4),D(0,4).O ABCDA(0,-4),B(4,-4),C(4,0),D(0,0).yxO想一想:还可以建立其他平面直角坐标系,表示正方形的四个顶点A,B,C,D的坐标吗?A(-4,0),B(0,0),C(0,4),D(-4,4).A(-4,-4),B(0,-4),C(0,0),D(-4,0).A(-2,-2),B(2,-2),C(2,2),D(-2,2). 追问由上得知,建立的平面直角坐标系不同,则各点的坐标也不同.你认为怎样建立直角坐标系才比较适当?【总结】平面直角坐标系建立得适当,可以容易确定图形上的点,例如以正方形的两条边所在的直线为坐标轴,建立平面直角坐标系.又如以正方形的中心为原点建立平面直角坐标系.建立不同的平面直角坐标系,同一个点就会有不同的坐标,但正方形的形状和性质不会改变. 例1:如图,矩形ABCD的长和宽分别为8和6,试建立适当的平面直角坐标系表示矩形ABCD各顶点的坐标,并作出矩形ABCD.典例精析 因为BC=8,AB=6,可得点A,C,D的坐标分别为:A(0,6),C(8,0),D(8,6).依次连接A,B,C,D,可得所求作的矩形.●AC●D●解:如图所示,以点B为坐标原点,分别以BC,AB所在直线为x轴,y轴,建立平面直角坐标系.规定1个单位长度为1.点B的坐标为(0,0). 变式:长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3).请你写出另外三个顶点的坐标.解:如图建立直角坐标系,∵长方形的一个顶点的坐标为A(-2,-3),∴长方形的另外三个顶点的坐标分别为B(2,-3),C(2,3),D(-2,3). 由已知条件正确确定坐标轴的位置是解决本题的关键,当建立的直角坐标系不同,其点的坐标也就不同,但要注意,一旦直角坐标系确定以后,点的坐标也就确定了.方法总结 右图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋❷的坐标是________.解析:由已知白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),可知y轴应在从左往右数的第四条格线上,且向上为正方向,x轴在从上往下数第二条格线上,且向右为正方向,这两条直线的交点为坐标原点,由此可得黑棋❷的坐标是(1,-2).练一练(1,-2) 例2:下图是一个机器零件的尺寸规格示意图,试建立适当的平面直角坐标系表示其各顶点的坐标,并作出这个示意图.解:过点D作AB的垂线,垂足为点O,以点O为原点,分别以AB,DO所在直线为x轴,y轴,建立平面直角坐标系,如上右图所示. 规定1个单位长度为100mm,则四边形ABCD的顶点坐标分别为:A(-1,0),B(4,0),C(3,2),D(0,2).依次连接A,B,C,D,则图中的四边形ABCD即为所求作的图形. 坐标平面内图形面积的计算二画一画:你能在直角坐标系里描出点A(-4,-5),B(-2,0),C(4,0)吗?并连线.Oxy-5-4-3-2-1123454321-1-2-3-4-5ABC●●● Oxy-5-4-3-2-1123454321-1-2-3-4-5ABC●●●问题:你能求出△ABC的面积吗?D解:过点A作AD⊥x轴于点D.∵A(-4,-5),∴D(-4,0).由点的坐标可得AD=5,BC=6,∴S△ABC=·BC·AD=×6×5=15. 例3:在平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来得到一个封闭图形,说说得到的是什么图形,并计算他们的面积.(1)A(5,1),B(2,1),C(2,-3)(2)A(-1,2),B(-2,-1),C(2,-1),D(3,2)321-2-1-34xyABCDABC-1-2OO12345xy224-2-2 (1)得到一个直角三角形,如图所示.∴S=×3×4=6.(2)得到一个平行四边形,如图所示.∴S=3×4=12. 例4:如图,已知点A(2,-1),B(4,3),C(1,2),求△ABC的面积.解析:本题宜用补形法.过点A作x轴的平行线,过点C作y轴的平行线,两条平行线交于点E,过点B分别作x轴、y轴的平行线,分别交EC的延长线于点D,交EA的延长线于点F,然后根据S△ABC=S长方形BDEF-S△BDC-S△CEA-S△BFA即可求出△ABC的面积. 例4:如图,已知点A(2,-1),B(4,3),C(1,2),求△ABC的面积.解:如图,过点A作x轴的平行线,过点C作y轴的平行线,两条平行线交于点E,过点B分别作x轴、y轴的平行线,分别交EC的延长线于点D,交EA的延长线于点F.∵A(2,-1),B(4,3),C(1,2),∴BD=3,CD=1,CE=3,AE=1,AF=2,BF=4,∴S△ABC=S长方形BDEF-S△BDC-S△CEA-S△BFA=BD·DE-DC·DB-CE·AE-AF·BF=12-1.5-1.5-4=5. 本题主要考查如何利用简单方法求坐标系中图形的面积.已知三角形三个顶点坐标,求三角形面积通常有三种方法:方法一:直接法,计算三角形一边的长,并求出该边上的高;方法二:补形法,将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差;方法三:分割法,选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.方法总结 当堂练习yABC1.已知A(1,4),B(-4,0),C(2,0).△ABC的面积是___.2.若BC的坐标不变,△ABC的面积为6,点A的横坐标为-1,那么点A的坐标为.12O(1,4)(-4,0)(2,0)CyAB(-4,0)(2,0)(-1,2)或(-1,-2)O 12341O32–2–1–1–2–3–4–3-4yABCx3.对于边长为4的正三角形△ABC,建立适当的直角坐标系,写出各个顶点的坐标.解:A(0,),B(-2,0),C(2,0). 4.在一次“寻宝”游戏中,寻宝人已经找到了坐标为(3,2)和(3,-2)的两个标志点,并且知道藏宝地点的坐标为(4,4),如何确定直角坐标系找到“宝藏”?·12345-4-3-2-131425-2-1-3y·O(3,-2)x(3,2)··(4,4)解:如图所示. 坐标平面内的图形课堂小结坐标平面内图形面积的计算建立适当的直角坐标系描述图形的位置

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2022-03-17 16:08:03 页数:25
价格:¥3 大小:546.00 KB

推荐特供

MORE