CC课件
首页

19.1多边形内角和学案(沪科版八下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

第19章四边形19.1多边形内角和学习目标1.使学生了解多边形的内角、外角等概念.2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.重点、难点1.重点:(1)多边形的内角和公式.(2)多边形的外角和公式.2.难点:多边形的内角和定理的推导.教学过程一、探究1.我们知道三角形的内角和为__________.2.我们还知道,正方形的四个角都等于____°,那么它的内角和为_____°,同样长方形的内角和也是________°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.从中你得到什么结论?二、思考几个问题1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?综上所述,你能得到多边形内角和公式吗?设多边形的边数为n,则n边形的内角和等于______________.想一想:要得到多边形的内角和必需通过“___________定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例)三、例题 例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系.例2如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角.求:∠1+∠2+∠3+∠4+∠5+∠6的值.如果把六边形改成n边形.(n为不小于3的正整数)同样也可以得到其外角和等于________°.即多边形的外角和等于_________°.所以我们说多边形的外角和与它的_______无关.对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°.如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个_______,所以多边形的外角和等于________°.四、课堂练习五、课堂小结总结本节课主要内容.备选题: 一、判断题.1.当多边形边数增加时,它的内角和也随着增加.()2.当多边形边数增加时.它的外角和也随着增加.()3.三角形的外角和与一多边形的外角和相等.()4.从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形.()5.四边形的四个内角至少有一个角不小于直角.()二、填空题.1.一个多边形的每一个外角都等于30°,则这个多边形为边形.2.一个多边形的每个内角都等于135°,则这个多边形为边形.3.内角和等于外角和的多边形是边形.4.内角和为1440°的多边形是.5.一个多边形的内角的度数从小到大排列时,恰好依次增加相同的度数,其中最小角为100°,最大的是140°,那么这个多边形是边形.6.若多边形内角和等于外角和的3倍,则这个多边形是边形.7.五边形的对角线有条,它们内角和为.8.一个多边形的内角和为4320°,则它的边数为.9.多边形每个内角都相等,内角和为720°,则它的每一个外角为.10.四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠D=.11.四边形的四个内角中,直角最多有个,钝角最多有个,锐角最多有个.12.如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和增加.三、选择题.1.多边形的每个外角与它相邻内角的关系是()A.互为余角B.互为邻补角C.两个角相等D.外角大于内角2.若n边形每个内角都等于150°,那么这个n边形是()A.九边形B.十边形C.十一边形D.十二边形3.一个多边形的内角和为720°,那么这个多边形的对角线条数为()A.6条B.7条C.8条D.9条4.随着多边形的边数n的增加,它的外角和() A.增加B.减小C.不变D.不定5.若多边形的外角和等于内角和的和,它的边数是()A.3B.4C.5D.76.一个多边形的内角和是1800°,那么这个多边形是()A.五边形B.八边形C.十边形D.十二边形7.一个多边形每个内角为108°,则这个多边形()A.四边形B,五边形C.六边形D.七边形8,一个多边形每个外角都是60°,这个多边形的外角和为()A.180°B.360°C.720°D.1080°9.n边形的n个内角中锐角最多有()个.A.1个B.2个C.3个D.4个10.多边形的内角和为它的外角和的4倍,这个多边形是()A.八边形B.九边形C.十边形D,十一边形四、解答题.1.一个多边形少一个内角的度数和为2300°.(1)求它的边数;(2)求少的那个内角的度数.2.一个八边形每一个顶点可以引几条对角线?它共有多少条对角线?n边形呢?3.已知多边形的内角和为其外角和的5倍,求这个多边形的边数.4.若一个多边形每个外角都等于它相邻的内角的,求这个多边形的边数.5.多边形的一个内角的外角与其余内角的和为600°,求这个多边形的边数.6.n边形的内角和与外角和互比为13:2,求n.7.五边形ABCDE的各内角都相等,且AE=DE,AD∥CB吗?8.将五边形砍去一个角,得到的是怎样的图形?9.四边形ABCD中,∠A+∠B=210°,∠C=4∠D.求:∠C或∠D的度数.10.在四边形ABCD中,AB=AC=AD,∠DAC=2∠BAC.求证:∠DBC=2∠BDC.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2022-03-26 17:00:05 页数:4
价格:¥3 大小:571.28 KB

推荐特供

MORE