19.2菱形2第1课时菱形的判定定理1课件(华师大版八下)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
1/19
2/19
3/19
4/19
剩余15页未读,查看更多内容需下载
19.2菱形第19章矩形、菱形与正方形2.菱形的判定第1课时菱形的判定定理1
学习目标1.运用菱形的定义来判定菱形;(重点)2.利用菱形的性质(四条边相等)来判定菱形.(难点)
一组邻边相等有一组邻边相等的平行四边形叫做菱形平行四边形菱形的性质菱形两组对边平行四条边相等两组对角分别相等邻角互补两条对角线互相垂直平分每一条对角线平分一组对角边角对角线复习引入导入新课问题菱形的定义是什么?性质有哪些?
根据菱形的定义,可得菱形的第一个判定的方法:AB=AD,∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.数学语言有一组邻边相等的平行四边形叫做菱形.ABCD思考还有其他的判定方法吗?
四条边都相等的四边形是菱形一小刚:分别以A、C为圆心,以大于AC的长为半径作弧,两条弧分别相交于点B,D,依次连接A、B、C、D四点.已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?CABD想一想:根据小刚的作法你有什么猜想?你能验证小刚的作法对吗?猜想:四条边相等的四边形是菱形.讲授新课
证明:∵AB=BC=CD=AD;∴AB=CD,BC=AD.∴四边形ABCD是平行四边形.又∵AB=BC,∴四边形ABCD是菱形.ABCD已知:如图,四边形ABCD中,AB=BC=CD=AD.求证:四边形ABCD是菱形.证一证
四条边都相等的四边形是菱形AB=BC=CD=AD几何语言描述:∵在四边形ABCD中,AB=BC=CD=AD,∴四边形ABCD是菱形.ABCD菱形ABCD菱形的判定定理:要点归纳四边形ABCDABCD
下列命题中正确的是()A.一组邻边相等的四边形是菱形B.三条边相等的四边形是菱形C.四条边相等的四边形是菱形D.四个角相等的四边形是菱形C练一练
证明:∵∠1=∠2,又∵AE=AC,AD=AD,∴△ACD≌△AED(SAS).同理△ACF≌△AEF(SAS).∴CD=ED,CF=EF.又∵EF=ED,∴CD=ED=CF=EF,∴四边形CDEF是菱形.2例1如图,在△ABC中,AD是角平分线,点E、F分别在AB、AD上,且AE=AC,EF=ED.求证:四边形CDEF是菱形.ACBEDF1典例精析
例2如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.证明:由平移变换的性质得CF=AD=10cm,DF=AC.∵∠B=90°,AB=6cm,BC=8cm,∴AC=DF=AD=CF=10cm,∴四边形ACFD是菱形.四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.归纳
HGFEDCBA证明:∵四边形ABCD是矩形,∴AB=CD,∠A=∠D=90°.∵点F、E、H为AB、AD、CD的中点,∴△AEF≌△DEH,∴EF=EH,同理可得EF=EH=HG=FG.例3如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形.∴四边形EFGH是菱形.
ABCDEFGH拓展如图,顺次连接平行四边形ABCD各边中点,得到四边形EFGH是什么四边形?解:∵四边形ABCD为平行四边形,∴AD=BC,AB=CD,∠A=∠C,∴四边形EFGH是平行四边形.∵点E、F、G、H为各边中点,∴△AEF≌△CGH,∴EF=GH,同理可得FG=EH,
思考在学平行四边形的时候我们知道把两张等宽的纸条交叉重叠在一起得到的四边形是平行四边形,你能进一步判断重叠部分ABCD的形状吗?ACDB分析:易知四边形ABCD是平行四边形,只需证一组邻边相等或对角线互相垂直即可.由题意可知BC边上的高和CD边上的高相等,然后通过证△ABE≌△ADF,即得AB=AD.请补充完整的证明过程EF
1.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°B解析:∵将△ABC沿BC方向平移得到△DCE,∴AC∥DE,AC=DE,∴四边形ACED为平行四边形.当AC=BC时,AC=CE,平行四边形ACED是菱形.故选B.当堂练习
2.如图,四边形ABCD是平行四边形,延长BA到点E,使AE=AB,连接ED、EC、AC.添加一个条件,能使四边形ACDE成为菱形的是( )A.AB=ADB.AB=EDC.CD=AED.EC=ADB
3.如图,在△ABC中,AD是∠BAC的平分线,EF垂直平分AD交AB于E,交AC于F.求证:四边形AEDF是菱形.证明:∵AD平分∠BAC,∴∠BAD=∠CAD.又∵EF⊥AD,∴∠AOE=∠AOF=90°.∵在△AEO和△AFO中∠EAO=∠FAO,AO=AO,∠AOE=∠AOF,∴△AEO≌△AFO(ASA),∴EO=FO,AE=AF.∵EF垂直平分AD,∴EF、AD相互平分,∴四边形AEDF是平行四边形.又∵AE=AF,∴平行四边形AEDF为菱形.
(1)证明:由尺规作∠BAF的平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;4.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E,连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.
(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,由勾股定理得AO=4,∴AE=2AO=8.
定义:有一组邻边相等的平行四边形叫做菱形.判定定理1:四边都相等的四边形是菱形.菱形的判定课堂小结
版权提示
- 温馨提示:
- 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)