CC课件
首页

19.3正方形教案(华师大版八下)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/5

2/5

剩余3页未读,查看更多内容需下载

19.3正方形1.了解正方形的有关概念,理解并掌握正方形的性质和判定定理;(重点)2.会利用正方形的性质和判定进行相关的计算和证明.(难点)一、情境导入如图①所示,把可以活动的矩形框架ABCD的BC边平行移动,使矩形的邻边AD,DC相等,观察这时矩形ABCD的形状.如图②所示,把可以活动的菱形框架ABCD的∠A变为直角,观察这时菱形ABCD的形状.图①中图形的变化可判断矩形ABCD→特殊的四边形是什么四边形?图②中图形变化可判断菱形ABCD→特殊的四边形是什么四边形?经过观察,你发现既是矩形又是菱形的图形是什么四边形?引入正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形是正方形.注意:正方形既是特殊的矩形,又是特殊的菱形,即:有一组邻边相等的矩形是正方形或有一个角是直角的菱形是正方形.二、合作探究探究点一:正方形的性质【类型一】利用正方形的性质求角度四边形ABCD是正方形,△ADE是等边三角形,求∠BEC的大小.解析:等边△ADE可以在正方形的内部,也可以在正方形的外部,因此本题分两种情况.解:当等边△ADE在正方形ABCD外部时,如图①,AB=AE,∠BAE=90°+60°=150°,∴∠AEB=15°.同理可得∠DEC=15°.∴∠BEC=60°-15°-15°=30°; 当等边△ADE在正方形ABCD内部时,如图②,AB=AE,∠BAE=90°-60°=30°,∴∠AEB=75°.同理可得∠DEC=75°.∴∠BEC=360°-75°-75°-60°=150°.综上所述,∠BEC的大小为30°或150°.易错提醒:因为等边△ADE与正方形ABCD有一条公共边,所以边相等.本题分两种情况:等边△ADE在正方形的外部或在正方形的内部.【类型二】利用正方形的性质求线段长如图,正方形ABCD的边长为1cm,AC为对角线,AE平分∠BAC,EF⊥AC,求BE的长.解析:线段BE是Rt△ABE的一边,但由于AE未知,不能直接用勾股定理求BE,由条件可证△ABE≌△AFE,问题转化为求EF的长,结合已知条件易求解.解:∵四边形ABCD为正方形,∴∠B=90°,∠ACB=45°,AB=BC=1cm.∵EF⊥AC,∴∠EFA=∠EFC=90°.又∵∠ECF=45°,∴△EFC是等腰直角三角形,∴EF=FC.∵∠BAE=∠FAE,∠B=∠EFA=90°,AE=AE,∴△ABE≌△AFE,∴AB=AF=1cm,BE=EF.∴FC=BE.在Rt△ABC中,AC===(cm),∴FC=AC-AF=(-1)cm,∴BE=(-1)cm.方法总结:正方形被对角线分成4个等腰直角三角形,因此在正方形中解决问题时常用到等腰直角三角形的性质.【类型三】利用正方形的性质证明线段相等如图,已知过正方形ABCD的对角线BD上一点P,作PE⊥BC于点E,PF⊥CD于点F.求证:AP=EF.解析:由PE⊥BC,PF⊥CD知四边形PECF为矩形,故有EF=PC,这时只需说明AP=CP,由正方形对角线互相垂直平分可知AP=CP. 证明:连接AC,PC.∵四边形ABCD为正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF为矩形,∴PC=EF,∴AP=EF.方法总结:(1)在正方形中,常利用对角线互相垂直平分证明线段相等;(2)无论是正方形还是矩形,经常连接对角线,这样可以使分散的条件集中.探究点二:正方形的判定【类型一】先证明是矩形再证明是正方形已知:如图所示,在Rt△ABC中,∠C=90°,∠BAC,∠ABC的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CEDF是正方形.解析:欲证明四边形CEDF是正方形,先根据∠C=90°,DE⊥BC,DF⊥AC,证明四边形CEDF是矩形,再证明一组邻边相等即可.证明:过点D作DG⊥AB于点G.∵DF⊥AC,DE⊥BC,∴∠DFC=∠DEC=90°.又∵∠C=90°,∴四边形CEDF是矩形(有三个角是直角的四边形是矩形).∵AD平分∠BAC,DF⊥AC,DG⊥AB,∴DF=DG.同理可得DE=DG,∴DE=DF.∴四边形CEDF是正方形(有一组邻边相等的矩形是正方形).方法总结:正方形的判定方法有很多,可以先证明它是矩形,再证明它有一组邻边相等或对角线互相垂直.【类型二】先证明是菱形再证明是正方形已知:如图,点E,F,P,Q分别是正方形ABCD的四条边上的点,并且AF=BP=CQ=DE.求证:(1)EF=FP=PQ=QE;(2)四边形EFPQ是正方形.解析:(1)证明△DFE≌△APF≌△BQP≌△CEQ,即可证得EF=FP=PQ=QE;(2)由EF=FP=PQ=QE,可判定四边形EFPQ是菱形.又由△APF≌△BQP,易得∠FPQ=90°,即可证得四边形EFPQ是正方形. 证明:(1)∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD.∵AF=BP=CQ=DE,∴DF=AP=BQ=CE.在△APF和△DFE和△CEQ和△BQP中,∴△APF≌△DFE≌△CEQ≌△BQP(SAS),∴EF=FP=PQ=QE;(2)∵EF=FP=PQ=QE,∴四边形EFPQ是菱形.∵△APF≌△BQP,∴∠AFP=∠BPQ.∵∠AFP+∠APF=90°,∴∠APF+∠BPQ=90°,∴∠FPQ=90°,∴四边形EFPQ是正方形.方法总结:此题考查了正方形的判定与性质以及全等三角形的判定与性质.注意解题的关键是证得△APF≌△DFE≌△CEQ≌△BQP.探究点三:正方形的性质和判定的综合运用如图,EG,FH过正方形ABCD的对角线的交点O,且EG⊥FH.求证:四边形EFGH是正方形.解析:已知EG⊥FH,要证四边形EFGH为正方形,可先证四边形的对角线EG,HF互相平分,结合垂直得出四边形EFGH为菱形,再由对角线相等可得四边形EFGH为正方形.根据题意可通过三角形全等来证OE=OH=OG=OF.证明:∵四边形ABCD为正方形,∴OB=OC,∠ABO=∠BCO=45°,∠BOC=90°=∠COH+∠BOH.∵EG⊥FH,∴∠BOE+∠BOH=90°,∴∠COH=∠BOE,∴△CHO≌△BEO,∴OE=OH.同理可证:OE=OF=OG,∴OE=OF=OG=OH.又∵EG⊥FH,∴四边形EFGH为菱形.∵EO+GO=FO+HO,即EG=HF,∴四边形EFGH为正方形.方法总结:对角线互相垂直平分且相等的四边形是正方形.探究点四:正方形、菱形、矩形与平行四边形的综合运用 如图,△ABC中,点P是AC边上一个动点,过P作直线EF∥BC,交∠ACB的平分线于点E,交∠ACB的外角∠ACD的平分线于点F.(1)请说明:PE=PF;(2)当点P在AC边上运动到何处时,四边形AECF是矩形?为什么?(3)在(2)的条件下,△ABC满足什么条件时,四边形AECF是正方形?为什么?(4)当点P在边AC上运动时,四边形BEFC可能是菱形吗?请说明理由.解:(1)∵CE平分∠BCA,∴∠1=∠2.∵EF∥BC,∴∠E=∠1,∴∠E=∠2,∴EP=PC.同理PF=PC,∴EP=PF;(2)当点P在AC中点时,四边形AECF是矩形.∵PA=PC,PE=PF,∴四边形AECF是平行四边形.又∵∠ECF=∠BCD=90°,∴平行四边形AECF是矩形;(3)当∠ACB=90°时,四边形AECF是正方形.∵∠ACB=90°,∴AC⊥BC.∵EF∥BC,∴AC⊥EF,∴矩形AECF是正方形;(4)四边形BEFC不可能是菱形.∵∠ECF=90°,∴EF>CF,∴四边形BEFC不可能是菱形.三、板书设计1.正方形的性质;2.正方形的判定;3.正方形的性质和判定的综合运用;4.正方形、菱形、矩形与平行四边形的综合运用.经历正方形性质和判定的探索过程,发展学生初步的综合推理能力,主动探究的学习习惯,逐步掌握说理的基本方法.理解特殊的平行四边形之间的内在联系,培养学生辩证看问题的观点.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 初中 | 数学
发布时间:2022-03-29 18:00:08 页数:5
价格:¥3 大小:696.65 KB

推荐特供

MORE