CC课件
首页

高中数学人教A版选修2-1第2章2.3.2双曲线的简单几何性质教学设计

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/6

2/6

剩余4页未读,查看更多内容需下载

2.3.2 双曲线的简单几何性质知识与技能目标了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2)通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义.过程与方法目标(1)复习与引入过程引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过的思考问题,探究双曲线的扁平程度量椭圆的离心率.〖板书〗§2.2.2双曲线的简单几何性质.(2)新课讲授过程\n(i)通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.(ii)双曲线的简单几何性质①范围:由双曲线的标准方程得,,进一步得:,或.这说明双曲线在不等式,或所表示的区域;②对称性:由以代,以代和代,且以代这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以轴和轴为对称轴,原点为对称中心;③顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴,焦点不在的对称轴叫做虚轴;④渐近线:直线叫做双曲线的渐近线;\n⑤离心率:双曲线的焦距与实轴长的比叫做双曲线的离心率().(iii)例题讲解与引申、扩展例3求双曲线的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程.分析:由双曲线的方程化为标准方程,容易求出.引导学生用双曲线的实半轴长、虚半轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在轴上的渐近线是.扩展:求与双曲线共渐近线,且经过点的双曲线的标准方及离心率.解法剖析:双曲线的渐近线方程为.①焦点在轴上时,设所求的双曲线为,∵点在双曲线上,∴,无解;②焦点在轴上时,设所求的双曲线为,∵点在双曲线上,∴,因此,所求双曲线的标准方程为,离心率\n.这个要进行分类讨论,但只有一种情形有解,事实上,可直接设所求的双曲线的方程为.例4双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小半径为,上口半径为,下口半径为,高为.试选择适当的坐标系,求出双曲线的方程(各长度量精确到).解法剖析:建立适当的直角坐标系,设双曲线的标准方程为,算出的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.引申:如图所示,在处堆放着刚购买的草皮,现要把这些草皮沿着道路或送到呈矩形的足球场中去铺垫,已知,,,.能否在足球场上画一条“等距离”线,在“等距离”线的两侧的区域应该选择怎样的线路?说明理由.解题剖析:设为“等距离”线上任意一点,则,即(定值),∴“等距离”线是以、为焦点的双曲线的左支上的一部分,容易“等距离”线方程为.理由略.\n例5如图,设与定点的距离和它到直线:的距离的比是常数,求点的轨迹方程.分析:若设点,则,到直线:的距离,则容易得点的轨迹方程.引申:用《几何画板》探究点的轨迹:双曲线若点与定点的距离和它到定直线:的距离比是常数,则点的轨迹方程是双曲线.其中定点是焦点,定直线:相应于的准线;另一焦点,相应于的准线:.情感、态度与价值观目标\n在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.能力目标1、分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解决问题的能力.2、思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.3、实践能力:培养学生实际动手能力,综合利用已有的知识能力.4、创新意识能力:培养学生思考问题、并能探究发现一些问题的能力,探究解决问题的一般的思想、方法和途径.练习:第66页1、2、3、4、5作业:第3、4、6

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 | 数学
发布时间:2022-08-22 20:00:08 页数:6
价格:¥3 大小:135.71 KB

推荐特供

MORE