CC课件
首页

高中数学人教A版选修2-1第3章3.2立体几何中的向量方法教学设计

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/9

2/9

剩余7页未读,查看更多内容需下载

3.2立体几何中的向量方法--空间距离利用向量方法求解空间距离问题,可以回避此类问题中大量的作图、证明等步骤,而转化为向量间的计算问题.例1如图,已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,求点B到平面EFG的距离.分析:由题设可知CG、CB、CD两两互相垂直,可以由此建立空间直角坐标系.用向量法求解,就是求出过B且垂直于平面EFG的向量,它的长即为点B到平面EFG的距离.解:如图,设4i,4j,2k,以i、j、k为坐标向量建立空间直角坐标系C-xyz.由题设C(0,0,0),A(4,4,0),B(0,4,0),D(4,0,0),E(2,4,0),F(4,2,0),G(0,0,2).∴ ,,,,.设平面EFG,M为垂足,则M、G、E、F四点共面,由共面向量定理知,存在实数a、b、c,使得,\n∴ =(2a+4b,-2b-4c,2c).由平面EFG,得,,于是  ,.∴ 整理得:,解得.∴ =(2a+4b,-2b-4c,2c)=.∴ 故点B到平面EFG的距离为.说明:用向量法求点到平面的距离,常常不必作出垂线段,只需利用垂足在平面内、共面向量定理、两个向量垂直的充要条件解出垂线段对应的向量就可以了.例2已知正方体ABCD-的棱长为1,求直线与AC的距离.分析:设异面直线、AC的公垂线是直线l,则线段\n在直线l上的射影就是两异面直线的公垂线段,所以此题可以利用向量的数量积的几何意义求解.解:如图,设i,j,k,以i、j、k为坐标向量建立空间直角坐标系-xyz,则有,,,.∴ ,,.设n是直线l方向上的单位向量,则.∵ n,n,∴ ,解得或.取n,则向量在直线l上的投影为   n··.由两个向量的数量积的几何意义知,直线与AC的距离为.向量的内积与二面角的计算\n在《高等代数与解析几何》课程第一章向量代数的教学中,讲到几何空间的内积时,有一个例题(见[1],p53)要求证明如下的公式:(1)其中点O是二面角P-MN-Q的棱MN上的点,OA、OB分别在平面P和平面Q内。,,。为二面角P-MN-Q(见图1)。图1公式(1)可以利用向量的内积来加以证明:以Q为坐标平面,直线MN为y轴,如图1建立直角坐标系。记xOz平面与平面P的交线为射线OD,则,得,,。分别沿射线OA、OB的方向上作单位向量,,则。由计算知,的坐标分别为\n,,于是,。公式(1)在立体几何计算二面角的平面角时是有用的。我们来介绍如下的两个应用。例1.立方体ABCD-A1B1C1D1的边长为1,E、F、G、H、I分别为A1D1、A1A、A1B1、B1C1、B1B的中点。求面EFG和面GHI的夹角的大小(用反三角函数表示)。解由于图2中所画的两平面EFG和GHI只有一个公共点,没有交线,所以我们可以将该立方体沿AB方向平移1个单位。这样就使平面EFG平移至平面。而就是二面角G-IH-(见图3)。利用公式(1),只要知道了,和的大小,我们就能求出。图2\n由已知条件,和均为等边三角形,所以,而。因此,图3,即。解得,。当然,在建立了直角坐标系之后,通过计算向量的外积可计算出两平面的法向量,利用法向量同样也可算出夹角来。例2.计算正十二面体的两个相邻面的夹角的大小。解我们知道正十二面体的每个面都是大小相同的正五边形,且在正十二面体的每个顶点上均有3个面围绕。设P和Q\n是两个相邻的面,MN是它们的交线(如图4),则公式(1)中的,,分别为:,,,因此它们均为正五边形的内角。所以。图4所以,由公式(1)知,或。因此,,或。如果不使用公式(1),要求出例2中的夹角的大小在计算上要复杂很多。\n利用例2的结果,我们可以容易地计算出单位棱长正十二面体的体积V。设单位棱长正十二面体的中心为O,则该十二面体可以切割成十二个全等的正五棱锥,每个五棱锥以该多面体的一个面为底面、以O为其顶点。设该正五棱锥为,从而可知:。再设的底面积为S、高为h,设为单位边长正五边形(即的底)的中心,A、B为该五边形的两个相邻的顶点,H为AB的中点,,则,,。仍设为正十二面体两相邻面的夹角,则。所以。但是,,从而\n,或

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 | 数学
发布时间:2022-08-22 20:00:08 页数:9
价格:¥3 大小:162.00 KB

推荐特供

MORE