CC课件
首页

高中数学人教A版选修2-2第1章1.5.3定积分的概念例教学设计

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/7

2/7

剩余5页未读,查看更多内容需下载

1.5.3定积分的概念教学目标:1.通过求曲边梯形的面积和汽车行驶的路程,了解定积分的背景;2.借助于几何直观定积分的基本思想,了解定积分的概念,能用定积分定义求简单的定积分;3.理解掌握定积分的几何意义.教学重点:定积分的概念、用定义求简单的定积分、定积分的几何意义.教学难点:定积分的概念、定积分的几何意义.教学过程:一.创设情景复习:1.回忆前面曲边梯形的面积,汽车行驶的路程等问题的解决方法,解决步骤:分割→近似代替(以直代曲)→求和→取极限(逼近)2.对这四个步骤再以分析、理解、归纳,找出共同点.二.新课讲授1.定积分的概念\n一般地,设函数在区间上连续,用分点将区间等分成个小区间,每个小区间长度为(),在每个小区间上任取一点,作和式:如果无限接近于(亦即)时,上述和式无限趋近于常数,那么称该常数为函数在区间上的定积分。记为:,其中积分号,-积分上限,-积分下限,-被积函数,-积分变量,-积分区间,-被积式。说明:(1)定积分是一个常数,即无限趋近的常数(时)记为,而不是.(2)用定义求定积分的一般方法是:①分割:等分区间;②近似代替:取点;③求和:;④取极限:(3)曲边图形面积:;变速运动路程;变力做功\n2.定积分的几何意义从几何上看,如果在区间上函数连续且恒有,那么定积分表示由直线和曲线所围成的曲边梯形(如图中的阴影部分)的面积,这就是定积分的几何意义。说明:一般情况下,定积分的几何意义是介于轴、函数的图形以及直线之间各部分面积的代数和,在轴上方的面积取正号,在轴下方的面积去负号。分析:一般的,设被积函数,若在上可取负值。考察和式不妨设于是和式即为阴影的面积—阴影的面积(即轴上方面积减轴下方的面积)思考:根据定积分的几何意义,你能用定积分表示图中阴影部分的面积S吗?\n3.定积分的性质根据定积分的定义,不难得出定积分的如下性质:性质1;性质2(定积分的线性性质);性质3(定积分的线性性质);性质4(定积分对积分区间的可加性)(1);(2);说明:①推广:②推广:③性质解释:\n性质4性质1三.典例分析例1.利用定积分的定义,计算的值。分析:令;(1)分割把区间n等分,则第i个区间为:,每个小区间长度为:;(2)近似代替、求和取,则(3)取极限.\n例2.计算定积分12yxO分析:所求定积分是所围成的梯形面积,即为如图阴影部分面积,面积为。即:思考:若改为计算定积分呢?改变了积分上、下限,被积函数在上出现了负值如何解决呢?(后面解决的问题)例3.计算定积分分析:利用定积分性质有,利用定积分的定义分别求出,,就能得到的值。四.课堂练习计算下列定积分\n1.2.3.课本练习:计算的值,并从几何上解释这个值表示什么?五.回顾总结1.定积分的概念、用定义法求简单的定积分、定积分的几何意义.六.布置作业P503、5

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 | 数学
发布时间:2022-08-23 09:00:05 页数:7
价格:¥3 大小:175.51 KB

推荐特供

MORE