CC课件
首页
同步备课
小学
初中
高中
试卷
小升初
中考
高考
主题班会
学校用文
您的位置:
首页
>
高中
>
数学
>
人教A版
>
选修2-2
>
第二章 推理与证明
>
2.2 直接证明与间接证明
>
2.2.2 反证法
>
高中数学人教A版选修2-2第2章2.2.2反证法教学设计
高中数学人教A版选修2-2第2章2.2.2反证法教学设计
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/6
2
/6
剩余4页未读,
查看更多内容需下载
充值会员,即可
免费下载
文档下载
2.2.2间接证明--反证法教学目标:知识与技能:结合已经学过的数学实例,了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。教学重点:了解反证法的思考过程、特点教学难点:反证法的思考过程、特点教具准备:与教材内容相关的资料。教学设想:利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。教学过程:学生探究过程:综合法与分析法(1)、反证法\n反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。(2)、例子例1、求证:不是有理数\n例2、已知,求证:(且)例3、设,求证证明:假设,则有,从而因为,所以,这与题设条件矛盾,所以,原不等式成立。例4、设二次函数,求证:中至少有一个不小于.证明:假设都小于,则(1)\n另一方面,由绝对值不等式的性质,有(2)(1)、(2)两式的结果矛盾,所以假设不成立,原来的结论正确。注意:诸如本例中的问题,当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行。议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。试根据上述两例,讨论寻找矛盾的手段、方法有什么特点?例5、设0<a,b,c<1,求证:(1-a)b,(1-b)c,(1-c)a,不可能同时大于证:设(1-a)b>,(1-b)c>,(1-c)a>,则三式相乘:ab<(1-a)b•(1-b)c•(1-c)a<①又∵0<a,b,c<1∴同理:,\n以上三式相乘:(1-a)a•(1-b)b•(1-c)c≤与①矛盾∴原式成立例6、已知a+b+c>0,ab+bc+ca>0,abc>0,求证:a,b,c>0证:设a<0,∵abc>0,∴bc<0又由a+b+c>0,则b+c=-a>0∴ab+bc+ca=a(b+c)+bc<0与题设矛盾又:若a=0,则与abc>0矛盾,∴必有a>0同理可证:b>0,c>0巩固练习:第83页练习3、4、5、6课后作业:第84页4、5、6教学反思:\n反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。 反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
高中数学人教A版选修1-1课件:2.1.2《椭圆的简单几何性质》课时2
高中数学人教A版选修1-1课件:2.1.2《椭圆的简单几何性质》课时1
高中数学人教A版选修1-1课件:2.1.1《椭圆及其标准方程》课时2
高中数学人教A版必修5课件:第三章 不等式 章末高效整合
高中数学人教A版必修5课件:第二章 数列 章末高效整合
高中数学人教A版必修5课件:第3章 习题课 一元二次不等式的解法
高中数学人教A版必修5课件:第3章 不等式 3.4 基本不等式
高中数学人教A版必修5课件:第3章 不等式 3.3.2 第1课时 简单的线性规划问题
高中数学人教A版必修5课件:第3章 不等式 3.3.1 二元一次不等式(组)与平面区域
高中数学人教A版必修5课件:第3章 不等式 3.2 一元二次不等式及其解法
高中数学人教A版选修1-1课件:1.1.1《命题》
高中数学人教A版选修1-1课件:1.3.1《且(and)》课件1.3.2《或(or)》
文档下载
收藏
所属:
高中 | 数学
发布时间:2022-08-23 09:00:05
页数:6
价格:¥3
大小:44.60 KB
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
友情链接
CC课件