CC课件
首页

高中数学人教A版选修2-3第1章1.1分类加法计数原理和分步乘法计数原理2教学设计

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

1.1分类加法计数原理和分步乘法计数原理22分步乘法计数原理(1)提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以,,…,,,…的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各不相同,因此共有6×9=54个不同的号码.(2)发现新知分步乘法计数原理完成一件事有两类不同方案,在第1类方案中有种不同的方法,在第2类方案中有种不同的方法.那么完成这件事共有\n种不同的方法.(3)知识应用例1.设某班有男生30名,女生24名.现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第l步选男生.第2步选女生.解:第1步,从30名男生中选出1人,有30种不同选择;第2步,从24名女生中选出1人,有24种不同选择.根据分步乘法计数原理,共有30×24=720种不同的选法.一般归纳:完成一件事情,需要分成n个步骤,做第1步有种不同的方法,做第2步有种不同的方法……做第n步有种不同的方法.那么完成这件事共有种不同的方法.理解分步乘法计数原理:\n分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.例2.如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?\n解:按地图A、B、C、D四个区域依次分四步完成,第一步,m1=3种,第二步,m2=2种,第三步,m3=1种,第四步,m4=1种,所以根据乘法原理,得到不同的涂色方案种数共有N=3×2×1×1=6

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 | 数学
发布时间:2022-08-23 09:00:06 页数:4
价格:¥3 大小:52.47 KB

推荐特供

MORE