CC课件
首页

高中数学人教A版选修2-3第1章1.1分类加法计数原理和分步乘法计数原理4教学设计

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/8

2/8

剩余6页未读,查看更多内容需下载

1.1分类加法计数原理和分步乘法计数原理4例1.给程序模块命名,需要用3个字符,其中首字符要求用字母A~G或U~Z,后两个要求用数字1~9.问最多可以给多少个程序命名?分析:要给一个程序模块命名,可以分三个步骤:第1步,选首字符;第2步,选中间字符;第3步,选最后一个字符.而首字符又可以分为两类.解:先计算首字符的选法.由分类加法计数原理,首字符共有7+6=13种选法.再计算可能的不同程序名称.由分步乘法计数原理,最多可以有13×9×9==1053个不同的名称,即最多可以给1053个程序命名.例2.核糖核酸(RNA)分子是在生物细胞中发现的化学成分一个RNA分子是一个有着数百个甚至数千个位置的长链,长链中每一个位置上都由一种称为碱基的化学成分所占据.总共有4种不同的碱基,分别用A,C,G,U表示.在一个RNA分子中,各种碱基能够以任意次序出现,所以在任意一个位置上的碱基与其他位置上的碱基无关.假设有一类RNA分子由100个碱基组成,那么能有多少种不同的RNA分子?\n分析:用图1.1一2来表示由100个碱基组成的长链,这时我们共有100个位置,每个位置都可以从A,C,G,U中任选一个来占据.解:100个碱基组成的长链共有100个位置,如图1.1一2所示.从左到右依次在每一个位置中,从A,C,G,U中任选一个填人,每个位置有4种填充方法.根据分步乘法计数原理,长度为100的所有可能的不同RNA分子数目有(个)例3.电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有O或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问:(1)一个字节(8位)最多可以表示多少个不同的字符?\n(2)计算机汉字国标码(GB码)包含了6763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?分析:由于每个字节有8个二进制位,每一位上的值都有0,1两种选择,而且不同的顺序代表不同的字符,因此可以用分步乘法计数原理求解本题.解:(1)用图1.1一3来表示一个字节.图1.1一3一个字节共有8位,每位上有2种选择.根据分步乘法计数原理,一个字节最多可以表示2×2×2×2×2×2×2×2=28=256个不同的字符;(2)由(1)知,用一个字节所能表示的不同字符不够6763个,我们就考虑用2个字节能够表示多少个字符.前一个字节有256种不同的表示方法,后一个字节也有256种表示方法.根据分步乘法计数原理,2个字节可以表示256×256=65536个不同的字符,这已经大于汉字国标码包含的汉字个数6\n763.所以要表示这些汉字,每个汉字至少要用2个字节表示.例4.计算机编程人员在编写好程序以后需要对程序进行测试.程序员需要知道到底有多少条执行路径(即程序从开始到结束的路线),以便知道需要提供多少个测试数据.一般地,一个程序模块由许多子模块组成.如图1.1一4,它是一个具有许多执行路径的程序模块.问:这个程序模块有多少条执行路径?另外,为了减少测试时间,程序员需要设法减少测试次数你能帮助程序员设计一个测试方法,以减少测试次数吗?图1.1一4分析:整个模块的任意一条执行路径都分两步完成:第1步是从开始执行到A点;第2步是从A点执行到结束.而第1步可由子模块1或子模块2或子模块3来完成;第2步可由子模块4或子模块5来完成.因此,分析一条指令在整个模块的执行路径需要用到两个计数原理.\n解:由分类加法计数原理,子模块1或子模块2或子模块3中的子路径共有18+45+28=91(条);子模块4或子模块5中的子路径共有38+43=81(条).又由分步乘法计数原理,整个模块的执行路径共有91×81=7371(条).在实际测试中,程序员总是把每一个子模块看成一个黑箱,即通过只考察是否执行了正确的子模块的方式来测试整个模块.这样,他可以先分别单独测试5个模块,以考察每个子模块的工作是否正常.总共需要的测试次数为18+45+28+38+43=172.再测试各个模块之间的信息交流是否正常,只需要测试程序第1步中的各个子模块和第2步中的各个子模块之间的信息交流是否正常,需要的测试次数为3×2=6.如果每个子模块都工作正常,并且各个子模块之间的信息交流也正常,那么整个程序模块就工作正常.这样,测试整个模块的次数就变为172+6=178(次).显然,178与7371的差距是非常大的.巩固练习:\n1.如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通。从甲地到丙地共有多少种不同的走法?2.书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.(1)若从这些书中任取一本,有多少种不同的取法?(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?3.如图一,要给①,②,③,④四块区域分别涂上五种颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同颜色,则不同涂色方法种数为()A.180B.160C.96D.60①③④②①②③④④③②①图一图二图三若变为图二,图三呢?5.五名学生报名参加四项体育比赛,每人限报一项,报名方法的种数为多少?又他们争夺这四项比赛的冠军,获得冠军的可能性有多少种?\n6.(2007年重庆卷)若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成(C)A.5部分B.6部分C.7部分D.8部分教学反思:课堂小结1.分类加法计数原理和分步乘法计数原理是排列组合问题的最基本的原理,是推导排列数、组合数公式的理论依据,也是求解排列、组合问题的基本思想.2.理解分类加法计数原理与分步乘法计数原理,并加区别分类加法计数原理针对的是“分类”问题,其中各种方法相对独立,用其中任何一种方法都可以完成这件事;而分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,只有各个步骤都完成后才算做完这件事.3.运用分类加法计数原理与分步乘法计数原理的注意点:分类加法计数原理:首先确定分类标准,其次满足:完成这件事的任何一种方法必属于某一类,并且分别属于不同的两类的方法都是不同的方法,即"不重不漏".分步乘法计数原理:首先确定分步标准,其次满足:必须并且只需连续完成这n个步骤,这件事才算完成.分配问题\n把一些元素分给另一些元素来接受.这是排列组合应用问题中难度较大的一类问题.因为这涉及到两类元素:被分配元素和接受单位.而我们所学的排列组合是对一类元素做排列或进行组合的,于是遇到这类问题便手足无措了.事实上,任何排列问题都可以看作面对两类元素.例如,把10个全排列,可以理解为在10个人旁边,有序号为1,2,……,10的10把椅子,每把椅子坐一个人,那么有多少种坐法?这样就出现了两类元素,一类是人,一类是椅子。于是对眼花缭乱的常见分配问题,可归结为以下小的“方法结构”:①.每个“接受单位”至多接受一个被分配元素的问题方法是,这里.其中是“接受单位”的个数。至于谁是“接受单位”,不要管它在生活中原来的意义,只要.个数为的一个元素就是“接受单位”,于是,方法还可以简化为.这里的“多”只要“少”.②.被分配元素和接受单位的每个成员都有“归宿”,并且不限制一对一的分配问题,方法是分组问题的计算公式乘以.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

所属: 高中 | 数学
发布时间:2022-08-23 09:00:06 页数:8
价格:¥3 大小:156.02 KB

推荐特供

MORE